organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Monosuccinate ester of melampomagnolide B

Venumadhav Janganati,^a Narsimha Reddy Penthala,^a Nikhil Reddy Madadi,^a Sean Parkin^b and Peter A. Crooks^a*

^aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and ^bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA Correspondence e-mail: pacrooks@uams.edu

Received 20 December 2013; accepted 6 February 2014

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.002 Å; R factor = 0.024; wR factor = 0.062; data-to-parameter ratio = 13.4.

The title monosuccinate derivative of melampomagnolide B [systematic name: 4-(((1aR,7aS,10aS,10bS,E)-1a-methyl-8methylene-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno-[2',3':9,10]cyclodeca[1,2-b]furan-5-yl)methoxy)-4-oxobutanoic acid], C19H24O7, was obtained from the reaction of melampomagnolide B with succinic anhydride under nucleophilic addition reaction conditions. The molecule is built up from fused ten-, five- (lactone) and three-membered (epoxide) rings. The internal double bond in the tenmembered ring has the *cis* geometry (*i.e.* it is the *E* isomer). The lactone ring has an envelope-type conformation, with the (chiral) C atom opposite the lactone O atoms as the flap atom. In the crystal, $O-H \cdots O$ hydrogen bonds link the molecules into chains parallel to the *b*-axis direction.

Related literature

For the biological activity of similar compounds, see: Nasim et al. (2011). For the isolation of a similar compound, see: El-Feraly (1984). For the structures and syntheses of similar compounds, see: Gonzalez et al. (1988); Macias et al. (1992); Casimir et al. (1995). Refinement progress was checked using routines in PLATON (Spek, 2009) and by the R-tensor (Parkin, 2000) The crystal was placed directly into the cold stream of a liquid nitrogen based cryostat, according to published methods, see: Hope (1994); Parkin & Hope (1998).

V = 1773.63 (7) Å³

Cu $K\alpha$ radiation

 $0.21 \times 0.20 \times 0.18 \ \mathrm{mm}$

21766 measured reflections 3218 independent reflections 3204 reflections with $I > 2\sigma(I)$

 $\mu = 0.87 \text{ mm}^{-1}$ T = 90 K

 $R_{\rm int} = 0.033$

Z = 4

Experimental

Crystal data

$C_{19}H_{24}O_7$	
$M_r = 364.38$	
Orthorhombic, $P2_12_12_1$	
a = 8.7866 (2) Å	
b = 9.6082 (2) Å	
c = 21.0088 (5) Å	

Data collection

Bruker X8 Proteum diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\min} = 0.818, T_{\max} = 0.889$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.062$	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
S = 1.03	Absolute structure: Flack
3218 reflections	parameter determined using 1346
240 parameters	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
H atoms treated by a mixture of	(Parsons et al., 2013)
independent and constrained	Absolute structure parameter:
refinement	-0.02(3)

Table 1	
Hydrogen-bond geometry (Å	, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$07-H7\cdots O1^{i}$ $C6-H6A\cdots O6^{ii}$ $C7-H7A\cdots O1^{iii}$ $C14-H14A\cdots O7^{iv}$	0.88 (2) 1.00 1.00 0.99	1.91 (3) 2.60 2.40 2.51	2.7616 (16) 3.173 (2) 3.3293 (19) 3.418 (2)	162 (2) 117 154 153
Symmetry codes: (i)	-r + 3 - v -	$1 - 1 - \frac{1}{2}$ (ii)	$-r \pm 1$ $v = \frac{1}{2}$	$-\pi \perp \frac{3}{2}$ (iii)

 $-\frac{1}{2}, -z + \frac{1}{2};$ (111) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$ (iv) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b); molecular graphics: XP in SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b) and CIFFIX (Parkin, 2013).

This work was supported by NIH/NCI grant CA158275.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5379).

CrossMark

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Casimir, J. R., Turetta, C., Ettouati, L. & Paris, J. (1995). *Tetrahedron Lett.* 36, 4797–4800.
- El-Feraly, F. S. (1984). Phytochemistry, 23, 2372–2374.
- Gonzalez, A. G., Galindo, A., Mar Afonso, M., Mansilla, H. & Lopez, M. (1988). *Tetrahedron*, **44**, 4585–4589.
- Hope, H. (1994). Prog. Inorg. Chem. 41, 1-19.
- Macias, F. A., Galindo, J. C. G. & Massanet, G. M. (1992). Phytochemistry, 31, 1969–1977.
- Nasim, S., Pei, S. S., Hagan, F. K., Jordan, C. T. & Crooks, P. A. (2011). Bioorg. Med. Chem. 19, 1515–1519.
- Parkin, S. (2000). Acta Cryst. A56, 157-162.
- Parkin, S. (2013). *CIFFIX*. http://xray.uky.edu/people/parkin/programs/ciffix. Parkin, S. & Hope, H. (1998). J. Appl. Cryst. **31**, 945–953.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008*b*). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supporting information

Acta Cryst. (2014). E70, o372–o373 [doi:10.1107/S1600536814002815]

Monosuccinate ester of melampomagnolide B

Venumadhav Janganati, Narsimha Reddy Penthala, Nikhil Reddy Madadi, Sean Parkin and Peter A. Crooks

S1. Comment

Melampomagnolide B (MMB), a melampolide originally isolated from *Magnolia grandiflora*, (El-Feraly, 1984), has been identified as a new antileukemic sesquiterpene with properties similar to parthenolide (PTL). MMB was synthesized by a method using selenium oxide (Macias *et al.*, 1992) for the oxidation of the C10 methylgroup of PTL, which also results in concomitant conversion of the geometry of the C9—C10 double bond from *E* to *Z* (Gonzalez *et al.* 1988). Recently, Nasim *et al.* (2011) have reported the biotin-conjugate derivative of melampomagnolide B, to elucidate its anti-leukemic mechanism of action. More importantly, from a drug design point of view, MMB is a more interesting molecule because it contains an OH group, which provides the means for designing pro-drugs with improved water solubility, bioavailability and tissue targeting. In the current study we synthesized a mono succinate derivative of MMB by the reaction of MMB with succinic anhydride (Casimir *et al.* 1995). The compound obtained was recrystallized from a mixture of 9:1 dichloromethane and methanol. In order to obtain detailed information on the structural conformation of this molecule a single-crystal X-ray structure determination has been carried out. This revealed that in the crystal structure the molecules of the title compound are connected by intermolecular O—H…O hydrogen bonds between the carboxylic acid (donor) and epoxide (acceptor) groups, linking the molecules into chains that propagate parallel to the *c*-axis.

S2. Experimental

To a reaction mixture of MMB (200 mg, 0.76 mmol) and triethylamine (76.7 mg, 0.76 mmol) in dichloromethane (5 mL), succinic anhydride (76 mg, 0.76 mmol) was added at ambient temperature. The resulting reaction mixture was stirred for 48 h and the reaction was monitored by TLC. After completion of the reaction the resulting mixture was concentrated under reduced pressure to afford the crude product, which was purified by column chromatography (silica gel, 3-5% methanol in dichloromethane) to obtain the desired compound 4-(((1aR,7aS,10aS,10bS,E)-1a-methyl-8-methylene-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno[2',3':9,10]cyclodeca[1,2-*b* $]furan-5-yl)methoxy)-4-oxobutanoic acid as a white solid (yield: 90 %). The obtained solid was recrystallized from a mixture of dichloromethane and methanol (9:1) as colourless needles. Melting point 398-399°K. ¹H NMR (400 MHz, DMSO-d_6): <math>\delta$ 12.25 (s, 1H), 6.05 (d, *J*=2.8 Hz, 1H), 5.64-5.57 (m, 2H), 4.64 (d, *J*=12.4 Hz, 1H), 4.42 (d, *J*=12.8 Hz, 1H), 4.12 (t, *J*= 9.6 Hz, 1H), 2.99 (t, *J*=3 Hz, 1H), 2.85 (d, *J*=9.6 Hz, 1H), 2.30-2.04 (m, 10H), 1.66 (t, *J*=11.6 Hz, 1H), 1.47 (s, 3H), 0.96 (t, *J*=11.6 Hz, 1H); ¹³C NMR (100 MHz DMSO-d_6): δ 173.8, 172.4,169.8, 140.0, 135.3, 129.5, 119.7, 110.0, 81.0, 66.9, 63.0, 60.3, 42.2, 36.7, 29.1, 25.0, 24.2, 23.6, 17.9 ppm.

S3. Refinement

H atoms were found in difference Fourier maps and subsequently placed at idealized positions with constrained distances of 0.98 Å (RCH₃), 0.99 Å (R₂CH₂), 1.00 Å (R₃CH), 0.95 Å (C_{sp2}H). The OH hydrogen coordinates attached to O7 were freed in the final cycles of refinement. $U_{iso}(H)$ values were set to either $1.2U_{eq}$ or $1.5U_{eq}$ (RCH₃, OH) of the attached atom.

The title molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

4-(((1a*R*,7a*S*,10a*S*,10b*S*,*E*)-1a-Methyl-8-methylene-9-oxo-1a,2,3,6,7,7a,8,9,10a,10bdecahydrooxireno[2',3':9,10]cyclodeca[1,2-*b*]furan-5-yl)methoxy)-4-oxobutanoic acid

$C_{19}H_{24}O_7$	$D_{\rm x} = 1.365 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 364.38$	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
Orthorhombic, $P2_12_12_1$	Cell parameters from 9822 reflections
a = 8.7866 (2) Å	$\theta = 5.5 - 68.3^{\circ}$
b = 9.6082 (2) Å	$\mu = 0.87 \text{ mm}^{-1}$
c = 21.0088 (5) Å	T = 90 K
V = 1773.63 (7) Å ³	Wedge, colourless
Z = 4	$0.21 \times 0.20 \times 0.18 \text{ mm}$
F(000) = 776	

Data collection

Bruker X8 Proteum diffractometer Radiation source: fine-focus rotating anode Detector resolution: 5.6 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2008 <i>a</i>) $T_{min} = 0.818, T_{max} = 0.889$	21766 measured reflections 3218 independent reflections 3204 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 68.2^{\circ}, \theta_{min} = 5.5^{\circ}$ $h = -10 \rightarrow 4$ $k = -11 \rightarrow 11$ $l = -24 \rightarrow 25$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.062$ S = 1.03 3218 reflections 240 parameters 0 restraints Primary atom site location: structure-invariant direct methods	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0321P)^2 + 0.4142P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e } \text{Å}^{-3}$ Extinction correction: <i>SHELXL2013</i> (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0033 (6)
Secondary atom site location: difference Fourier map Hydrogen site location: mixed	Absolute structure: Flack parameter determined using 1346 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
	Absolute structure parameter: -0.02 (3)

Special details

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, fastened in a copper mounting pin with electrical solder. It was placed directly into the cold stream of a liquid nitrogen based cryostat, according to published methods (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using routines in Platon (Spek, 2009), by the R-tensor (Parkin, 2000), and with the IUCr utility checkCIF.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.20411 (13)	0.31754 (11)	0.44993 (5)	0.0191 (3)	
O2	0.23859 (13)	0.11877 (11)	0.55661 (5)	0.0204 (3)	
O3	0.26866 (16)	-0.07622 (12)	0.61342 (6)	0.0307 (3)	
O4	0.73762 (12)	0.64045 (12)	0.64763 (5)	0.0201 (3)	
O5	0.95459 (14)	0.52306 (14)	0.66681 (7)	0.0309 (3)	
O6	0.98811 (14)	0.66939 (14)	0.83142 (6)	0.0290 (3)	
O7	1.23791 (13)	0.70884 (13)	0.82130 (6)	0.0229 (3)	
H7	1.238 (3)	0.690 (2)	0.8623 (12)	0.034*	
C1	0.5239 (2)	0.60864 (17)	0.52307 (8)	0.0214 (4)	
H1A	0.6171	0.6045	0.5002	0.026*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C2	0.3899 (2)	0.66538 (17)	0.48663 (8)	0.0248 (4)
H2A	0.4240	0.7463	0.4612	0.030*
H2B	0.3127	0.6990	0.5173	0.030*
C3	0.3147 (2)	0.55854 (17)	0.44177 (8)	0.0223 (3)
H3A	0.2483	0.6076	0.4110	0.027*
H3B	0.3944	0.5087	0.4175	0.027*
C4	0.22202 (19)	0.45571 (16)	0.47891 (7)	0.0184 (3)
C5	0.30221 (18)	0.33451 (16)	0.50515 (7)	0.0162 (3)
H5A	0.4138	0.3313	0.4958	0.019*
C6	0.25592 (17)	0.26798 (16)	0.56681 (7)	0.0167 (3)
H6A	0.1580	0.3090	0.5822	0.020*
C7	0.38020 (17)	0.28350 (17)	0.61809 (7)	0.0184 (3)
H7A	0.4809	0.2858	0.5960	0.022*
C8	0.3701 (2)	0.41277 (18)	0.66040 (8)	0.0227 (4)
H8A	0.4472	0.4042	0.6945	0.027*
H8B	0.2688	0.4134	0.6811	0.027*
С9	0.39325 (18)	0.55441 (17)	0.62692 (7)	0.0199 (3)
H9A	0.3006	0.5757	0.6019	0.024*
H9B	0.4034	0.6273	0.6600	0.024*
C10	0.52939 (18)	0.56347 (16)	0.58308 (8)	0.0190 (3)
C11	0.36737 (18)	0.14530 (18)	0.65197 (8)	0.0217 (4)
C12	0.28777 (19)	0.04748 (17)	0.60846 (8)	0.0220 (4)
C13	0.4154 (2)	0.1067 (2)	0.70887 (9)	0.0300 (4)
H13A	0.3994	0.0140	0.7231	0.036*
H13B	0.4660	0.1717	0.7356	0.036*
C14	0.68183 (18)	0.52273 (17)	0.60986 (8)	0.0223 (4)
H14A	0.6716	0.4390	0.6370	0.027*
H14B	0.7539	0.5015	0.5750	0.027*
C15	0.07576 (19)	0.50907 (18)	0.50694 (8)	0.0231 (4)
H15A	0.0156	0.4307	0.5230	0.035*
H15B	0.0178	0.5584	0.4741	0.035*
H15C	0.0986	0.5729	0.5420	0.035*
C16	0.87876 (18)	0.62669 (18)	0.67217 (7)	0.0197 (3)
C17	0.9271 (2)	0.75939 (19)	0.70422 (8)	0.0267 (4)
H17A	0.8544	0.7803	0.7389	0.032*
H17B	0.9210	0.8362	0.6729	0.032*
C18	1.0873 (2)	0.7560 (2)	0.73186 (8)	0.0249 (4)
H18A	1.1513	0.6947	0.7051	0.030*
H18B	1.1309	0.8509	0.7297	0.030*
C19	1.09495 (19)	0.70589 (17)	0.79952 (8)	0.0189 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0226 (6)	0.0180 (5)	0.0165 (5)	-0.0031 (4)	-0.0027 (4)	-0.0021 (4)
O2	0.0256 (6)	0.0170 (5)	0.0188 (5)	-0.0029 (5)	-0.0005 (5)	0.0013 (4)
O3	0.0416 (7)	0.0206 (6)	0.0299 (6)	-0.0002 (5)	0.0045 (6)	0.0061 (5)
04	0.0175 (6)	0.0213 (6)	0.0215 (5)	0.0006 (4)	-0.0039 (4)	-0.0023 (4)

Acta Cryst. (2014). E70, o372-o373

supporting information

05	0.0225 (6)	0.0267 (7)	0.0436 (7)	0.0041 (5)	-0.0058 (6)	-0.0024 (6)
06	0.0205 (6)	0.0381 (8)	0.0284 (6)	-0.0032 (5)	0.0045 (5)	0.0074 (6)
07	0.0177 (6)	0.0311 (6)	0.0200 (6)	-0.0015 (5)	-0.0027 (4)	0.0018 (5)
C1	0.0225 (8)	0.0161 (7)	0.0256 (9)	-0.0040 (7)	0.0014 (7)	-0.0039 (6)
C2	0.0335 (9)	0.0170 (8)	0.0239 (8)	-0.0047 (7)	-0.0040 (7)	0.0013 (7)
C3	0.0296 (9)	0.0193 (8)	0.0182 (7)	-0.0033 (7)	-0.0028 (7)	0.0012 (6)
C4	0.0214 (8)	0.0178 (8)	0.0160 (7)	-0.0010 (7)	-0.0036 (6)	-0.0025 (6)
C5	0.0160 (7)	0.0170 (7)	0.0156 (7)	-0.0016 (6)	-0.0004 (6)	-0.0025 (6)
C6	0.0166 (7)	0.0164 (7)	0.0171 (7)	-0.0003 (6)	0.0005 (6)	-0.0002 (6)
C7	0.0151 (7)	0.0231 (8)	0.0170 (7)	-0.0003 (6)	-0.0010 (6)	0.0014 (6)
C8	0.0230 (8)	0.0296 (9)	0.0155 (7)	-0.0026 (7)	-0.0008 (6)	-0.0023 (6)
C9	0.0172 (7)	0.0240 (8)	0.0185 (7)	0.0007 (6)	-0.0021 (6)	-0.0051 (6)
C10	0.0166 (7)	0.0156 (7)	0.0248 (8)	-0.0011 (6)	-0.0012 (6)	-0.0050 (6)
C11	0.0155 (7)	0.0267 (9)	0.0227 (8)	0.0031 (6)	0.0026 (6)	0.0035 (7)
C12	0.0218 (8)	0.0225 (9)	0.0218 (8)	0.0022 (7)	0.0052 (7)	0.0042 (6)
C13	0.0246 (9)	0.0382 (10)	0.0272 (9)	-0.0007 (8)	-0.0031 (7)	0.0105 (8)
C14	0.0175 (8)	0.0197 (8)	0.0297 (8)	-0.0019 (7)	-0.0022 (6)	-0.0050 (7)
C15	0.0218 (8)	0.0232 (8)	0.0245 (8)	0.0049 (7)	-0.0040 (7)	-0.0010 (7)
C16	0.0170 (7)	0.0254 (9)	0.0166 (7)	-0.0004 (7)	0.0011 (6)	0.0049 (6)
C17	0.0277 (9)	0.0285 (9)	0.0238 (8)	0.0007 (8)	-0.0080 (7)	-0.0025 (7)
C18	0.0230 (8)	0.0338 (9)	0.0181 (8)	-0.0042 (7)	-0.0020 (6)	-0.0002 (7)
C19	0.0171 (7)	0.0191 (7)	0.0204 (8)	-0.0013 (6)	0.0001 (6)	-0.0024 (6)

Geometric parameters (Å, °)

01C5	1.4545 (18)	C7—C11	1.511 (2)
O1—C4	1.4691 (18)	С7—С8	1.530 (2)
O2—C12	1.357 (2)	С7—Н7А	1.0000
O2—C6	1.4575 (19)	C8—C9	1.545 (2)
O3—C12	1.205 (2)	C8—H8A	0.9900
O4—C16	1.3495 (19)	C8—H8B	0.9900
O4—C14	1.4660 (19)	C9—C10	1.512 (2)
O5—C16	1.203 (2)	С9—Н9А	0.9900
O6—C19	1.206 (2)	С9—Н9В	0.9900
O7—C19	1.337 (2)	C10—C14	1.505 (2)
O7—H7	0.88 (2)	C11—C13	1.321 (2)
C1—C10	1.334 (2)	C11—C12	1.486 (2)
C1—C2	1.507 (2)	C13—H13A	0.9500
C1—H1A	0.9500	C13—H13B	0.9500
C2—C3	1.542 (2)	C14—H14A	0.9900
C2—H2A	0.9900	C14—H14B	0.9900
C2—H2B	0.9900	C15—H15A	0.9800
C3—C4	1.499 (2)	C15—H15B	0.9800
С3—НЗА	0.9900	C15—H15C	0.9800
С3—Н3В	0.9900	C16—C17	1.503 (2)
C4—C5	1.468 (2)	C17—C18	1.522 (2)
C4—C15	1.504 (2)	C17—H17A	0.9900
C5—C6	1.501 (2)	C17—H17B	0.9900

supporting information

С5—Н5А	1.0000	C18—C19	1.502 (2)
C6—C7	1.541 (2)	C18—H18A	0.9900
С6—Н6А	1.0000	C18—H18B	0.9900
	10000	010 11102	019900
C5—O1—C4	60.30 (9)	C10—C9—C8	115.61 (13)
$C_{12} = O_{2} = C_{6}$	110.19(12)	C10—C9—H9A	108.4
C16-04-C14	116.01 (12)	C8—C9—H9A	108.4
C19—O7—H7	109.5 (16)	C10—C9—H9B	108.4
C10-C1-C2	128 74 (16)	C8—C9—H9B	108.4
C10-C1-H1A	115.6	H9A - C9 - H9B	107.4
$C_2 - C_1 - H_1 A$	115.6	C1 - C10 - C14	118 03 (15)
C1 - C2 - C3	113.86 (14)	C1 - C10 - C9	124 46 (15)
$C1 - C2 - H2\Delta$	108.8	C14-C10-C9	124.40(15) 117.48(14)
C_{3} C_{2} H_{2} A	108.8	C_{13} C_{11} C_{12}	121.97 (16)
$C_1 = C_2 = H_2 R$	108.8	C_{13} C_{11} C_{7}	121.97(10) 130.49(17)
$C_1 = C_2 = H_2 B$	108.8	C_{12} C_{11} C_{7}	107.54(17)
H_{2} H_{2	103.3	03 - 012 - 02	107.54(15) 121.52(16)
$H_2A = C_2 = H_2B$	107.7	03 - C12 - 02	121.32(10) 120.52(16)
C4 = C3 = C2	110.08 (15)	03-012-011	129.32(10) 108.02(12)
$C_4 = C_3 = H_2 A$	109.5	02 - C12 - C11	108.92 (13)
$C_2 = C_3 = H_3 A$	109.5	CII—CI3—HI3A	120.0
C4—C3—H3B	109.5		120.0
С2—С3—Н3В	109.5	HI3A—CI3—HI3B	120.0
H3A—C3—H3B	108.1	04—C14—C10	107.42 (12)
C5-C4-O1	59.36 (9)	O4—C14—H14A	110.2
C5—C4—C3	117.22 (14)	C10—C14—H14A	110.2
O1—C4—C3	115.97 (13)	O4—C14—H14B	110.2
C5—C4—C15	122.24 (14)	C10—C14—H14B	110.2
O1—C4—C15	112.27 (13)	H14A—C14—H14B	108.5
C3—C4—C15	116.31 (14)	C4—C15—H15A	109.5
O1—C5—C4	60.34 (9)	C4—C15—H15B	109.5
O1—C5—C6	118.69 (12)	H15A—C15—H15B	109.5
C4—C5—C6	122.12 (13)	C4—C15—H15C	109.5
O1—C5—H5A	114.9	H15A—C15—H15C	109.5
C4—C5—H5A	114.9	H15B—C15—H15C	109.5
С6—С5—Н5А	114.9	O5—C16—O4	123.66 (15)
O2—C6—C5	108.69 (12)	O5-C16-C17	125.95 (15)
O2—C6—C7	105.78 (12)	O4—C16—C17	110.36 (14)
C5—C6—C7	111.72 (12)	C16—C17—C18	114.48 (15)
O2—C6—H6A	110.2	C16—C17—H17A	108.6
С5—С6—Н6А	110.2	C18—C17—H17A	108.6
С7—С6—Н6А	110.2	C16—C17—H17B	108.6
C11—C7—C8	115.82 (13)	C18—C17—H17B	108.6
C11—C7—C6	101.03 (12)	H17A—C17—H17B	107.6
C8—C7—C6	116.32 (13)	C19—C18—C17	114.15 (15)
С11—С7—Н7А	107.7	C19—C18—H18A	108.7
C8—C7—H7A	107.7	C17—C18—H18A	108.7
С6—С7—Н7А	107.7	C19—C18—H18B	108.7
С7—С8—С9	116.28 (13)	C17—C18—H18B	108.7
	\ /		

C7—C8—H8A C9—C8—H8A C7—C8—H8B	108.2 108.2 108.2	H18A—C18—H18B O6—C19—O7 O6—C19—C18	107.6 123.18 (15) 125.75 (15)
C9—C8—H8B H8A—C8—H8B	108.2 107.4	O7—C19—C18	111.05 (14)
C10—C1—C2—C3	-100.0 (2)	C7—C8—C9—C10	-47.66 (19)
C1—C2—C3—C4	75.03 (19)	C2-C1-C10-C14	-175.00 (15)
C5—O1—C4—C3	107.62 (16)	C2-C1-C10-C9	3.1 (3)
C5-01-C4-C15	-115.31 (15)	C8—C9—C10—C1	128.93 (16)
C2—C3—C4—C5	-85.28 (17)	C8—C9—C10—C14	-53.01 (19)
C2—C3—C4—O1	-152.51 (14)	C8—C7—C11—C13	-34.8 (2)
C2—C3—C4—C15	72.17 (18)	C6—C7—C11—C13	-161.43 (18)
C4—O1—C5—C6	112.70 (16)	C8—C7—C11—C12	146.07 (14)
C3—C4—C5—O1	-105.53 (14)	C6—C7—C11—C12	19.48 (15)
C15—C4—C5—O1	98.46 (16)	C6—O2—C12—O3	171.71 (15)
O1—C4—C5—C6	-107.15 (15)	C6—O2—C12—C11	-10.25 (17)
C3—C4—C5—C6	147.32 (14)	C13—C11—C12—O3	-8.2 (3)
C15—C4—C5—C6	-8.7 (2)	C7—C11—C12—O3	170.97 (17)
C12—O2—C6—C5	143.08 (13)	C13—C11—C12—O2	173.94 (16)
C12—O2—C6—C7	22.97 (16)	C7—C11—C12—O2	-6.87 (17)
O1—C5—C6—O2	57.76 (17)	C16—O4—C14—C10	-175.73 (13)
C4—C5—C6—O2	128.95 (14)	C1—C10—C14—O4	99.00 (17)
O1—C5—C6—C7	174.11 (12)	C9—C10—C14—O4	-79.19 (17)
C4—C5—C6—C7	-114.70 (16)	C14—O4—C16—O5	-3.4 (2)
O2—C6—C7—C11	-25.13 (15)	C14—O4—C16—C17	174.58 (13)
C5—C6—C7—C11	-143.23 (13)	O5—C16—C17—C18	-0.4 (2)
O2—C6—C7—C8	-151.39 (13)	O4—C16—C17—C18	-178.27 (13)
C5—C6—C7—C8	90.51 (16)	C16—C17—C18—C19	-89.65 (18)
С11—С7—С8—С9	176.24 (14)	C17—C18—C19—O6	0.4 (3)
C6—C7—C8—C9	-65.30 (19)	C17—C18—C19—O7	-178.44 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	<i>D</i> —H··· <i>A</i>
O7—H7···O1 ⁱ	0.88 (2)	1.91 (3)	2.7616 (16)	162 (2)
C6—H6A···O6 ⁱⁱ	1.00	2.60	3.173 (2)	117
C7—H7A····O1 ⁱⁱⁱ	1.00	2.40	3.3293 (19)	154
C14—H14 A ····O7 ^{iv}	0.99	2.51	3.418 (2)	153

Symmetry codes: (i) -x+3/2, -y+1, z+1/2; (ii) -x+1, y-1/2, -z+3/2; (iii) x+1/2, -y+1/2, -z+1; (iv) -x+2, y-1/2, -z+3/2.