Ruthenocene 1,2-Dicarboxylic Acid, Carboxylic Anhydride, and Acid Chloride: A Facile Route to Metallocene-Fused Acenequinones

Uttam Raj Pokharel, John P. Selegue,* and Sean Parkin

Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States

S Supporting Information

ABSTRACT: The dehydration of $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}$ -pentamethylruthenocene-1,2-dicarboxylic acid with acetic anhydride gives 1',2',3',4',5'-pentamethylruthenocene-1,2-dicarboxylic anhydride, the first crystallographically characterized, metallocenefused carboxylic anhydride. Treatment of the diacid with oxalyl

chloride/DMF produces its 1,2-diacyl chloride, which is an excellent precursor for AlCl₃-promoted double Friedel-Crafts acylation reactions with a variety of arenes, including benzene, toluene, o-xylene, p-dimethoxybenzene, and ferrocene. X-ray structural determinations of an acenequinone and a unique ferrocene/ruthenocene-fused benzoquinone show distortions attributed to strong electron donation from pentamethylruthenocene.

Polycyclic aromatic hydrocarbons are benchmark semiconducting materials for organic field-effect transistors, 1 light-emitting diodes,² and photovoltaic cells.^{3,4} Our long-term interest⁵⁻¹¹ in transition metal complexes of low-band-gap η^5 -cyclopenta-[c] thienyl monomers and polymers led us to consider polyacenes with terminal cyclopentadienyl metal groups, which are unknown except for simple $\eta^{\rm 5}$ -indenyl complexes and a few benz[f]indenyl complexes of zirconium¹² and ruthenium.¹³ We report here a route to metallocene-fused acenequinones, potential precursors for the desired acenes.

1,2-Dicarbophenoxycyclopentadienylsodium (1) ,¹⁴ conveniently prepared by a single-step reaction of cyclopentadienylsodium with phenyl chloroformate,¹¹ forms with higher 1,2selectivity than alkyl chloroformates, making 1 the preferred precursor for metallocene-1,2-dicarboxylates. Transmetalation of $[\text{Ru}(\mu_3\text{-Cl})(\text{Cp}^*)]_4^{15}$ with 1 gives diester 2 in 78% yield (Scheme 1). Saponification of the diester¹⁶ gives diacid 3 in 95% yield. Dehydration of 3 with refluxing acetic anhydride produces 1',2',3',4',5'-pentamethylruthenocene-1,2-dicarboxylic anhydride (4) in 84% yield. Two strong carbonyl infrared stretching frequencies at 1820 and 1764 cm^{-1} support the formation of a cyclic anhydride. The anhydride is surprisingly stable to water, surviving an aqueous workup. The only previous metallocenefused carboxylic anhydride is 1,2-ferrocenedicarboxylic anhydride, prepared in very low yields by N,N'-dicyclohexylcarbodiimide (DCC) dehydration of 1,2-ferrocenedicarboxylic acid, 17,18 but properties (e.g., light sensitivity) reported by two groups are not entirely consistent. In contrast, DCC treatment of 3 gives a stable N , N^{\prime} -dicyclohexyl- N -ruthenocenoylurea rather than the expected anhydride. Compounds 3 and 4 were characterized by their spectroscopic properties and X-ray structural determinations (vide infra).

Organic carboxylic anhydrides react with electron-rich aromatics under Friedel-Crafts conditions to give acenequinones.¹⁹⁻²⁴ However, our attempts to diacylate 1,4-dimethoxybenzene with 4 in molten $NaCl/AlCl₃$ resulted in the formation of an intractable mixture containing a small amount of a monoacylation product.

EXAMELES ARE AREN' (Aristophysics Action Carboxylic Animatographysics) processing operation of the sequence Treatment of 3 with oxalyl chloride/DMF led to its 1,2-diacyl chloride (5) in 50% isolated yield. Complex 5 is stable under dry conditions, but is more efficiently generated in situ to acylate arenes, including benzene, toluene, o-xylene, p-dimethoxybenzene, and ferrocene (Scheme 1), giving acenequinone complexes $6a-e$ (42-58%) and 7 (36%). Complex 7 contains an unusual μ -[(1,2,3,3a,8a- η :4a,5,6,7,7a- η)-4,8-dihydro-4,8-dioxo-s-indacene-1,4a(1H)-diyl] bridging two different metals, precedented only by a pair of symmetrical diruthenium compounds.²⁵ Whereas toluene gives a single product $(6b)$, ¹H NMR shows that *o*-xylene gives two isomers $(6c,d)$ in a 1:1 ratio, implying that the arene undergoes electrophilic substitution first para to an activating substituent, followed by an indiscriminate second acylation. Dimethoxyacenequinone 6e undergoes facile demethylation with anhydrous $AICI₃$ to give dihydroxyquinone complex 9 , with a H-bonded phenolic ¹H NMR resonance at 12.93 ppm. The reduction of $\overrightarrow{6}b$ with LiAlH₄ gave a single (by ¹H and ¹³C NMR) diol complex (8, 68%), presumably the syn isomer resulting from nucleophilic hydride addition to the side of the acenequinone ligand opposite the large Cp* group.

X-ray crystal structures of 3, 4, 6a, and 7 (Figure 1) all exhibit typical ruthenocene geometry with nearly linear $(Cp \ncentroid)$ - $Ru-(Cp^*$ centroid) angles ranging from $177.38(13)$ ^o (3) to 175.60(6) \textdegree (7). In all structures the Ru atom is situated *closer* to the two ring-fusion carbons than to the other three carbons of the Cp ring, with the Ru–C shift ranging from $0.026(3)$ Å in 3 to 0.099(16) Å in 7. Similar asymmetry was observed in $[(Ru (Cp^*)\} _{2}\left\{\mu-\eta^{5}:\eta^{5}-C_{5}H_{3}(CO)_{2}C_{5}H_{3}\}\right\}^{25}$ [Ru($\eta^{5}-C_{5}H_{4}COMe$)- (Cp^*)],²⁶ and $[Ru\{\eta^5-1,2-C_5H_3(COPh)_2\}(Cp^*)]$.¹² Curiously,

Published: May 24, 2011 Received: May 11, 2011

Scheme 1. Synthesis of Pentamethylruthenocene-1,2-dicarboxylic Acid and Its Derivatives

Figure 1. Thermal ellipsoid plots of the molecular structures of $\left[\text{Ru}\{\eta^5\text{-}C_5\text{H}_3(\text{CO}_2\text{H})\text{-}1,2\}(\text{Cp}^*)\right]$ (3), $\left[\text{Ru}\{\eta^5\text{-}C_5\text{H}_3(\text{CO})_2\text{O} \text{-}1,2\}(\text{Cp}^*)\right]$ (4), $[\text{Ru}(\eta^5 \text{-} C_5H_3(CO)_2C_6\hat{H}_4](C_P^*)]$ (6a), and $[\text{Ru}(C_P^*)\{\mu_2 \text{-} \eta^5 \text{-} \eta^5 \text{-} 1,2\text{-} C_5H_3(CO)_2\text{-} 1,2\text{-} C_5H_3)\}$ Fe (C_P)] (7).

the Fe atom in 7 shows a classic indenyl effect, $27-30$ shifting $0.082(16)$ Å away from the two ring-fusion carbon atoms. In 6a, the Cp-CO bonds, C1-C13 and C5-C6, are $0.044(4)$ Å shorter than the Ph-CO bonds, $C12-C13$ and $C6-C7$. Although the disubstituted cyclopentadienyl ligands of 3, 4, 6a, and 7 are nearly planar, there are some subtle deviations. The two carboxylic acid moieties of 3 lie in the cyclopentadienyl plane (interplanar angles $3.2-4.4^{\circ}$), held together by a network of intra- and intermolecular hydrogen bonds with carboxylate O-H-O distances ranging from $2.532(4)$ to $2.592(4)$ Å and a methanol oxygen atom 2.859(5) Å from O3A. The cyclopentadienyl

anhydride ring of 4 is essentially planar, with angles of 3.2° and 5.3 $^{\circ}$ between the Cp (C1-C5) and anhydride (C1, C5-C7,

Chart 2. Resonance Description of Compound 7

 $O1-O3$) planes in two independent molecules. The bending of the quinone ligands of 6a and 7 is illustrated in Chart 1. In both complexes, the quinone portion of the ligand is inclined slightly toward $[\text{Ru}(Cp^*)]$, but in 7 the quinone is inclined slightly away from $[Fe(Cp)]$. Much of the bending is due to a slight folding of the quinone ring along the $O-C-C-O$ axis, by 4.1° in 6a and 11.5° in 7.

We suggest that the structural distortions are due to the stronger electron-donor character of $[Ru(Cp^*)]$ compared to $[Fe(Cp)]$. In both 6 and 7, electron-rich $[Ru(Cp^*)]$ shifts toward the electron-withdrawing carbonyl substituents, while in 7 relatively electron-deficient $[Fe(Cp)]$ shifts away from the carbonyls. Donation of electron density from $[Ru(Cp^*)]$ to the carbonyls in 6 and 7 results in a decreased carbonyl stretching frequency from 1660 cm⁻¹ for 9,10-anthraquinone to 1650 cm⁻¹ for 6 and 1643 cm^{-1} for 7. The lower C=O bond order is rationalized by the resonance forms $7b-d$ in Chart 2.

In summary, 1',2',3',4',5'-pentamethylruthenocene-1,2-dicarboxylic acid and its derived carboxylic anhydride and acid chloride can be prepared simply in high yield, opening new avenues in organometallic Friedel-Crafts chemistry. The resulting benz[f]indenyl quinone complexes are potential precursors for organometallic polyacenes. Aromatization of the quinone ligands and extension of this chemistry to longer acene chains and other transition metals are in progress.

ASSOCIATED CONTENT

B Supporting Information. Syntheses and data for $1-9$; tables of crystallographic details, atomic coordinates, displacement parameters, bond distances, and angles; and CIFs for 3, 4, 6a, and 7. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: selegue@uky.edu.

ACKNOWLEDGMENT

We thank the Research Corporation for support of this research.

REFERENCES

- (1) Mas-Torrent, M.; Rovira, C. Chem. Soc. Rev. 2008, 37, 827–838.
- (2) Anthony, J. E. Chem. Rev. 2006, 106, 5028–5048.

(3) Hains, A. W.; Liang, Z.; Woodhouse, M. A.; Gregg, B. A. Chem. Rev. 2010, 110, 6689–6735.

- (4) Li, C.; Liu, M.; Pschirer, N. G.; Baumgarten, M.; Müllen, K. Chem. Rev. 2010, 110, 6817–6855.
- (5) Blankenbuehler, M. T.; Selegue, J. P. J. Organomet. Chem. 2002, 642, 268–274.
- (6) Eaton, D. L.; Selegue, J. P.; Anthony, J. E.; Patrick, B. O. Heterocycles 2002, 57, 2373–2381.

(7) Selegue, J. P.; Swarat, K. A. J. Am. Chem. Soc. 2002, 115, 6448– 6449.

- (8) Snyder, C. A.; Selegue, J. P.; Dosunmu, E.; Tice, N. C.; Parkin, S. J. Org. Chem. 2003, 68, 7455–7459.
- (9) Snyder, C. A.; Selegue, J. P.; Tice, N. C.; Wallace, C. E.; Blankenbuehler, M. T.; Parkin, S.; Allen, K. D. E.; Beck, R. T. J. Am. Chem. Soc. 2005, 127, 15010–15011.
- (10) Wallace, C. E.; Selegue, J. P.; Carrillo, A. Organometallics 1998, 17, 3390–3393.
- (11) Tice, N. C.; Parkin, S.; Selegue, J. P. J. Organomet. Chem. 2007, 692, 791–800.
- (12) Kim, D. H.; Lee, J. A.; Lee, B. Y.; Chung, Y. K. J. Organomet. Chem. 2005, 690, 1822–1828.
- (13) Zhao, X.; Luo, X.; Li, B.; Song, H.; Xu, S.; Wang, B. Eur. Polym. J. 2008, 144, 3264–3270.
- (14) Busetto, L.; Cassani, M. C.; Zanotti, V.; Albano, V. G.; Sabatino, P. Organometallics 2001, 20, 282–288.
- (15) Fagan, P. J.; Ward, M. D.; Calabrese, J. C. J. Am. Chem. Soc. 1989, 111, 1698–1719.

(16) Khurana, J. M.; Chauhan, S.; Bansal, G. Monatsh. Chem. 2004, 135, 83–87.

- (17) Roling, P. V.; Rausch, M. D. J. Org. Chem. 1974, 39, 1420–1424.
- (18) Richards, J. H.; Curphey, T. J. Chem. Ind. (London) 1956, 1456.
- (19) Kende, A. S.; Tsay, Y.-G.; Mills, J. E. J. Am. Chem. Soc. 1976,

98, 1967–1969.

- (20) Paulsen, H.; Luettke, W. Chem. Ber. 1979, 112, 2907–2912.
- (21) Ishizumi, K.; Ohashi, N.; Tanno, N. J. Org. Chem. 1987, 52, 4477–4485.
- (22) Mitscher, L. A.; Gill, H.; Filippi, J. A.; Wolgemuth, R. L. J. Med. Chem. 1986, 29, 1277–1281.
- (23) Wong, C. M.; Gordon, P. M.; Chen, A. G.; Lam, H. Y. P. Can. J. Chem. 1987, 65, 1375–9.
- (24) Tang, M. L.; Oh, J. H.; Reichardt, A. D.; Bao, Z. J. Am. Chem. Soc. 2009, 131, 3733–3740.
- (25) Sato, M.; Suzuki, M.; Okoshi, M.; Kurasina, M.; Watanabe, M. J. Organomet. Chem. 2002, 648, 72–80.
- (26) Gassman, P. G.; Winter, C. H. J. Am. Chem. Soc. 1988, 110, 6130–6135.
- (27) O'Connor, J. M.; Casey, C. P. Chem. Rev. 1987, 87, 307–318.
- (28) Lobanova, I. A.; Zdanovich, V. I. Russ. Chem. Rev. 1988,
- 57, 967–980.
	- (29) Basolo, F. New J. Chem. 1994, 18, 19–24.
- (30) Calhorda, M. J.; Romão, C. C.; Veiros, L. F. Chem.-Eur. J. 2002, 8, 868–875.