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Polycyclic aromatic hydrocarbons are benchmark semiconduct-
ing materials for organic field-effect transistors,1 light-emitting

diodes,2 and photovoltaic cells.3,4 Our long-term interest5�11 in
transition metal complexes of low-band-gap η5-cyclopenta-
[c]thienyl monomers and polymers led us to consider polyacenes
with terminal cyclopentadienyl metal groups, which are unknown
except for simple η5-indenyl complexes and a few benz[f]indenyl
complexes of zirconium12 and ruthenium.13 We report here a
route to metallocene-fused acenequinones, potential precursors
for the desired acenes.

1,2-Dicarbophenoxycyclopentadienylsodium (1),14 conveni-
ently prepared by a single-step reaction of cyclopentadienylso-
dium with phenyl chloroformate,11 forms with higher 1,2-
selectivity than alkyl chloroformates, making 1 the preferred
precursor for metallocene-1,2-dicarboxylates. Transmetalation
of [Ru(μ3-Cl)(Cp*)]4

15 with 1 gives diester 2 in 78% yield
(Scheme 1). Saponification of the diester16 gives diacid 3 in 95%
yield. Dehydration of 3 with refluxing acetic anhydride produces
10,20,30,40,50-pentamethylruthenocene-1,2-dicarboxylic anhy-
dride (4) in 84% yield. Two strong carbonyl infrared stretching
frequencies at 1820 and 1764 cm�1 support the formation of a
cyclic anhydride. The anhydride is surprisingly stable to water,
surviving an aqueous workup. The only previous metallocene-
fused carboxylic anhydride is 1,2-ferrocenedicarboxylic anhy-
dride, prepared in very low yields by N,N0-dicyclohexylcarbodii-
mide (DCC) dehydration of 1,2-ferrocenedicarboxylic acid,17,18

but properties (e.g., light sensitivity) reported by two groups are
not entirely consistent. In contrast, DCC treatment of 3 gives a
stable N,N0-dicyclohexyl-N-ruthenocenoylurea rather than the
expected anhydride. Compounds 3 and 4 were characterized by
their spectroscopic properties and X-ray structural determina-
tions (vide infra).

Organic carboxylic anhydrides react with electron-rich aromatics
under Friedel�Crafts conditions to give acenequinones.19�24

However, our attempts to diacylate 1,4-dimethoxybenzene

with 4 in molten NaCl/AlCl3 resulted in the formation of an
intractable mixture containing a small amount of a monoacyla-
tion product.

Treatment of 3 with oxalyl chloride/DMF led to its 1,2-diacyl
chloride (5) in 50% isolated yield. Complex 5 is stable under dry
conditions, but is more efficiently generated in situ to acylate
arenes, including benzene, toluene, o-xylene, p-dimethoxyben-
zene, and ferrocene (Scheme 1), giving acenequinone complexes
6a�e (42�58%) and 7 (36%). Complex 7 contains an unusual
μ-[(1,2,3,3a,8a-η:4a,5,6,7,7a-η)-4,8-dihydro-4,8-dioxo-s-inda-
cene-1,4a(1H)-diyl] bridging two different metals, precedented
only by a pair of symmetrical diruthenium compounds.25

Whereas toluene gives a single product (6b), 1H NMR shows
that o-xylene gives two isomers (6c,d) in a 1:1 ratio, implying that
the arene undergoes electrophilic substitution first para to an
activating substituent, followed by an indiscriminate second acyla-
tion. Dimethoxyacenequinone 6e undergoes facile demethyla-
tion with anhydrous AlCl3 to give dihydroxyquinone complex 9,
with a H-bonded phenolic 1H NMR resonance at 12.93 ppm.
The reduction of 6b with LiAlH4 gave a single (by

1H and 13C
NMR) diol complex (8, 68%), presumably the syn isomer resulting
from nucleophilic hydride addition to the side of the acenequi-
none ligand opposite the large Cp* group.

X-ray crystal structures of 3, 4, 6a, and 7 (Figure 1) all exhibit
typical ruthenocene geometry with nearly linear (Cp centroid)�
Ru�(Cp* centroid) angles ranging from 177.38(13)� (3) to
175.60(6)� (7). In all structures the Ru atom is situated closer to
the two ring-fusion carbons than to the other three carbons of the
Cp ring, with the Ru�C shift ranging from 0.026(3) Å in 3 to
0.099(16) Å in 7. Similar asymmetry was observed in [(Ru-
(Cp*)}2{μ-η

5:η5-C5H3(CO)2C5H3}],
25 [Ru(η5-C5H4COMe)-

(Cp*)],26 and [Ru{η5-1,2-C5H3(COPh)2}(Cp*)].
12 Curiously,
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ABSTRACT: The dehydration of 10,20,30,40,50-pentamethyl-
ruthenocene-1,2-dicarboxylic acid with acetic anhydride gives
10,20,30,40,50-pentamethylruthenocene-1,2-dicarboxylic anhy-
dride, the first crystallographically characterized, metallocene-
fused carboxylic anhydride. Treatment of the diacid with oxalyl
chloride/DMF produces its 1,2-diacyl chloride, which is an excellent precursor for AlCl3-promoted double Friedel�Crafts acylation
reactions with a variety of arenes, including benzene, toluene, o-xylene, p-dimethoxybenzene, and ferrocene. X-ray structural
determinations of an acenequinone and a unique ferrocene/ruthenocene-fused benzoquinone show distortions attributed to strong
electron donation from pentamethylruthenocene.
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the Fe atom in 7 shows a classic indenyl effect,27�30 shifting
0.082(16) Å away from the two ring-fusion carbon atoms. In 6a,
the Cp�CO bonds, C1�C13 and C5�C6, are 0.044(4) Å
shorter than the Ph�CO bonds, C12�C13 and C6�C7.
Although the disubstituted cyclopentadienyl ligands of 3, 4, 6a,
and 7 are nearly planar, there are some subtle deviations. The two
carboxylic acid moieties of 3 lie in the cyclopentadienyl plane
(interplanar angles 3.2�4.4�), held together by a network of
intra- and intermolecular hydrogen bonds with carboxylate
O�H�O distances ranging from 2.532(4) to 2.592(4) Å and a
methanol oxygen atom 2.859(5) Å fromO3A. The cyclopentadienyl

anhydride ring of 4 is essentially planar, with angles of 3.2� and
5.3� between the Cp (C1�C5) and anhydride (C1, C5�C7,

Scheme 1. Synthesis of Pentamethylruthenocene-1,2-dicarboxylic Acid and Its Derivatives

Figure 1. Thermal ellipsoid plots of the molecular structures of [Ru{η5-C5H3(CO2H)-1,2}(Cp*)] (3), [Ru{η5-C5H3(CO)2O-1,2}(Cp*)] (4),
[Ru{η5-C5H3(CO)2C6H4}(Cp*)] (6a), and [Ru(Cp*){μ2-η

5:η5-1,2-C5H3(CO)2-1,2-C5H3)}Fe(Cp)] (7).

Chart 1. Structural Distortions in Compounds 6a and 7
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O1�O3) planes in two independent molecules. The bending of
the quinone ligands of 6a and 7 is illustrated in Chart 1. In both
complexes, the quinone portion of the ligand is inclined slightly
toward [Ru(Cp*)], but in 7 the quinone is inclined slightly away
from [Fe(Cp)]. Much of the bending is due to a slight folding of
the quinone ring along the O�C�C�O axis, by 4.1� in 6a and
11.5� in 7.

We suggest that the structural distortions are due to the
stronger electron-donor character of [Ru(Cp*)] compared to
[Fe(Cp)]. In both 6 and 7, electron-rich [Ru(Cp*)] shifts toward
the electron-withdrawing carbonyl substituents, while in 7
relatively electron-deficient [Fe(Cp)] shifts away from the car-
bonyls. Donation of electron density from [Ru(Cp*)] to the
carbonyls in 6 and 7 results in a decreased carbonyl stretching
frequency from 1660 cm�1 for 9,10-anthraquinone to 1650 cm�1

for 6 and 1643 cm�1 for 7. The lower CdO bond order is
rationalized by the resonance forms 7b�d in Chart 2.

In summary, 10,20,30,40,50-pentamethylruthenocene-1,2-dicar-
boxylic acid and its derived carboxylic anhydride and acid
chloride can be prepared simply in high yield, opening new
avenues in organometallic Friedel�Crafts chemistry. The result-
ing benz[f]indenyl quinone complexes are potential precursors
for organometallic polyacenes. Aromatization of the quinone
ligands and extension of this chemistry to longer acene chains
and other transition metals are in progress.
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Chart 2. Resonance Description of Compound 7


