Complex magnetic order and spin chirality on the Kagomé lattices of BaMn_{2.49}Ru_{3.51}O₁₁ and BaFe_{3.26}Ti_{2.74}O₁₁

L. Shlyk,^{1,a)} S. Parkin,² and L. E. De Long¹

¹Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA ²Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA

(Presented 21 January 2010; received 30 October 2009; accepted 15 January 2010; published online 21 April 2010)

Anomalies in the magnetization of single-crystal $BaMn_{2.49}Ru_{3.51}O_{11}$ at temperatures $T_1=183$ K, $T_2=171$ K, and $T_3=128$ K, signal complex magnetic order induced by competing ferro- and antiferromagnetic correlations and magnetic frustration within the Kagomé (hexagonal ab-) plane. The T_2 - and T_3 -anomalies and unconventional transverse magnetoresistance are observed only for applied field *H* directed in the Kagomé plane, suggesting a topological Hall effect is generated by nonzero scalar chirality of spins canted out of the Kagomé plane, but is suppressed in a collinear structure induced by only modest $H \perp c$. In contrast, the magnetic susceptibility of an isostructural $BaFe_{3.26}Ti_{2.74}O_{11}$ single-crystal reveals magnetic transitions at $T_1=250$ K and $T_2=85$ K for *H* oriented both parallel and perpendicular to the c-axis. The rapid low-field increase of the magnetic moment at $\mu_0 H < 1$ T, followed by nonsaturation with a near-linear increase at high fields, are typical of a canted antiferromagnet or ferrimagnet. © 2010 American Institute of Physics. [doi:10.1063/1.3364060]

Frustration of antiferromagnetic (AFM) interactions by crystallographic symmetry is of current interest, and is marked by highly degenerate, noncollinear magnetic ground states that break chiral symmetry. A representative frustrated system is a Kagomé lattice formed from corner-sharing triangles. The R-type ferrites $BaM_2Ru_4O_{11}$ (M=Fe, Mn, and Co) crystallize in the hexagonal $P6_3/mmc$ structure^{2,3} in which layers of edge-sharing octahedra M(2)O₆ form a Kagomé sublattice within the a-b plane. The Kagomé planes are connected along the c-axis by face-sharing M(1)O₆ octahedra and trigonal bipyramids M(3)O₅ (Fig. 1).

 $(Ba, Sr)M_{2\pm x}Ru_{4\mp x}O_{11}$ (M=Fe or Co) exhibit electric and magnetic properties that can be widely varied by simple chemical substitution of 3d-elements, or by varying the relative concentration of 3d-elements and 4d-Ru over a wide homogeneity range.^{4,5} In spite of potential magnetic frustration on the Kagomé sublattice, some of these compositions exhibit a unique coexistence of narrow-gap semiconductivity with ferrimagnetic order at unusually high critical temperatures $T_C \sim 480$ K. These properties, together with a large anomalous Hall effect, make R-type ferrites attractive for spintronic applications.

We have found R-type ferrites of composition $BaM_{2\pm x}T_{4\mp x}O_{11}$ (M=Fe and Mn; T=Ru and Ti) exist over a homogeneity range generated by variable occupation of the octahedral M(1) and M(2) sites by 3d (Fe, Ti, and Mn) and 4d (Ru) elements, whereas the trigonal-pyramidal M(3) sites are exclusively occupied by 3d (Fe or Mn) elements.⁵ Here we focus on $BaMn_{2.49}Ru_{3.51}O_{11}$ and $BaFe_{3.26}Ti_{2.74}O_{11}$ single crystals that undergo several successive magnetic transitions.

Single crystals with maximum basal-plane width 1.5 mm and thickness around 0.05 mm were grown from a BaCl₂ flux, as described elsewhere.⁴ Sample compositions were determined from x-ray refinements and microprobe analysis. X-ray diffraction data were collected at T=90.0(2) K on a Nonius Kappa CCD Diffractometer using Mo K α radiation. The final full-matrix, least-squares refinement converged to $R_1=0.0375\%$, $wR_2=0.1040\%$ [with refined lattice parameters a=5.8370(8) Å, c = 13.616(3) Å for $BaFe_{3.26}Ti_{2.74}O_{11}$, and to $R_1 = 0.0143\%$, $wR_2 = 0.0369\%$ [with refined lattice parameters a=5.8754(8) Å, c=13.515(3) Å] for BaMn_{2,49}Ru_{3,51}O₁₁. The dc magnetic moment of oriented single crystals was measured over a temperature range 5 K $\leq T \leq 300$ K in applied magnetic fields $0 \leq \mu_0 H \leq 5$ T using a Quantum Design MPMS5 Magnetometer. Longitudinal and transverse magnetoresistivities, $\rho_{xx}(T)$ and $\rho_{yy}(H,T)$, respec-

FIG. 1. Crystal structure of R-type ferrites. The M(1) (4e) sites are predominantly occupied by Ru, the M(2) (6g) sites on the Kagomé sublattice are occupied by Ru and appropriate 3d-elements, and the M(3) (2d) sites are predominantly occupied by the appropriate 3d-elements (Refs. 4 and 5).

^{a)}Author to whom correspondence should be addressed. Tel.: 859 218 6526. Electronic mail: lshlyk@gmail.com.

FIG. 2. Temperature dependence of the ZFC magnetization $M_{\perp}(T,H)$ of single-crystal BaMn_{2.49}Ru_{3.51}O₁₁. Arrows designate magnetic transition temperatures. The solid line illustrates the linear dependence below T₃ = 128 K. The lower inset: ZFC magnetization $M_{\parallel}(T)$ vs temperature of single-crystal BaMn_{2.49}Ru_{3.51}O₁₁. ZFC mode is determined as a mode with a small residual field of only a few oersteds after complete degaussing of the superconducting quantum interference device.

tively, were measured using the MPMS5 external device control option and a dc four-probe method with currents 5 mA \leq J \leq 20 mA directed in the a-b plane.

for magnetization ZFC data the $M_{\parallel}(T)$ of BaMn_{2,49}Ru_{3,51}O₁₁ measured for $H \parallel c$ -axis (Fig. 2, inset) reveal a spontaneous magnetization that reflects ferromagnetic (FM) correlations below $T_{\rm C}$ =183 K, consistent with previous polycrystalline data³ (zero-field-cooled (ZFC) and fieldcooled (FC) M(T,H) curves are identical in their shape, indicating magnetic domain formation does not complicate these data). The magnetization curves for $H \parallel c$ are characteristic of a soft FM material with a coercive field $H_{c\parallel}$ =400 Oe at T=5 K (Fig. 3, upper inset). Distinct magnetic anisotropy (see Figs. 2 and 3) indicates the c-axis is the easy direction.

The ZFC magnetization $M_{\perp}(T,H)$ exhibits three striking anomalies for $H \perp c$: an abrupt increase just below T_1 =183 K, a cusp at T_2 =171 K, and a sharp minimum at T_3 =128 K that marks a strong, linear increase of $M_{\perp}(T,H)$ with decreasing $T < T_3$, as shown in Fig. 2. The sharp decrease of $M_{\perp}(T,H)$ below T_2 =171 K indicates dominant

FIG. 3. Magnetic moment m_{\perp} vs applied field $H \perp c$ for several temperatures T for single-crystal BaMn_{2.49}Ru_{3.51}O₁₁. The lower inset shows $\chi_{\perp}(T, H)$ at different applied fields $\mu_{0}H \perp c$. The upper inset shows $m_{\parallel}(T, H)$ vs applied field $\mu_{0}H_{\parallel}c$ for several temperatures.

AFM interactions, whereas the linear increase of $M_{\perp}(T,H)$ below T₃=128 K reflects residual FM correlations. The lower inset in Fig. 3 shows the susceptibility $\chi_{\perp}(T,H)$ in fields 0.01 T $\leq \mu_0 H \leq 1$ T, which slowly broaden and shift the T₂-anomaly to lower temperatures, but rapidly make the T₃-anomaly indistinct.

The field dependences of the magnetic moment $m_{\perp}(T,H)$ shown in Fig. 3 reflect two distinct regions for T < 167 K: a slow, linear increase of m_{\perp} ends at a critical field $H^{*}(T)$ (whose magnitude increases with decreasing T) at which dm_{\perp}/dH is discontinuous, and is followed by a saturated regime above $H^*(T)$. This behavior resembles that of simple AFM materials, where m(H) barely changes in the low-field collinear phase, then abruptly jumps into a canted structure at a spin flop transition followed by a strong linear increase of m(H) ending abruptly at FM saturation. (Here, an applied $H \perp c$ acts in conjunction with the exchange field along the easy c-axis to create the spin flop for the spins frustrated within the a-b planes). The strong linear increase and absence of any jump in $m_{\perp}(H)$ in Fig. 3 suggests a canted spin arrangement (dominated by AFM correlations) is present below T₂=171 K. The low-field, linear $m_{\perp}(H)$ is replaced by nonlinear FM behavior above 171 K, confirming FM correlations dominate AFM correlations for $T > T_2$.

The above observations signal complex magnetic order, consistent with previous powder neutron diffraction data² for *polycrystalline* BaMn₂Ru₄O₁₁: the M(1) sites were judged nonmagnetic, the M(3) sites ordered ferromagnetically parallel to the c-axis, and the M(2) sites ordered in a compensated triangular motif, characteristic of a frustrated lattice with AFM nearest-neighbor interactions. At T=100 K, the data were refined with an *in-plane*, "q=0" structure having uniform *vector chirality* $K_V = [2/(3\sqrt{3})](S_1xS_2 + S_2xS_3 + S_3xS_1)$ (where S_i [i=1-3] are spins located at the vertices of a Kagomé triangular plaquette). Below 100 K, the M(2) spins cant out of the a-b plane, inducing nonzero *scalar chirality* $K_S = S_1 \cdot (S_2 \times S_3)$, and a continuous increase of magnetic peak intensity that culminates in an ordered moment *m* = 3.3 μ_B at T=3.6 K.

The spin canting out of the Kagomé plane can generate a topological Hall effect (THE) driven by nonzero K_s .¹ The Hall resistivity of ferromagnets is usually expressed as

$$\rho_{xy} = R_0 H + 4\pi M R_s,\tag{1}$$

where R_o is the "normal" Hall coefficient resulting from the Lorentz force and R_s is the "anomalous" Hall coefficient that is dependent upon the magnetization M and spin-orbit coupling.^{6,7} The low-field Hall effect of FM materials is dominated by the anomalous term (AHE) identified by a field dependence that follows M(T,H) below T_c .⁶ We measured $\rho_{xy}(H,T)$ for BaMn_{2.49}Ru_{3.51}O₁₁ with in-plane current $J \perp H \parallel c$ (easy direction), which should induce a collinear state that suppresses spin chirality and the THE. As expected, ρ_{xy} exhibits a nonlinear field dependence only for $H \ll 1.0$ T where the AHE dominates (upper inset, Fig. 4). Above 1.0 T, both $m_{\parallel}(H)$ (upper inset, Fig. 3) and ρ_{xy} exhibit a weakly linear normal behavior.

In order to minimize the normal Hall term due to the Lorentz force, we employed an unconventional configuration

FIG. 4. Transverse resistivity ρ_{xy} vs magnetic field $H \perp c$ for single-crystal BaMn_{2.49}Ru_{3.51}O₁₁ at different temperatures. The upper inset shows ρ_{xy} vs magnetic field $H \parallel c$ (easy axis) at temperature T=5 K. The lower inset shows ρ_{xy} for a BaMn_{2.49}Ru_{3.51}O₁₁ single-crystal at T=174 K and $H \perp c$.

with $J \parallel H \perp c$, where $\rho_{xy}(T, H)$ should depend only on the AHE of the c-axis magnetization on the M(2) and M(3) sites, and the THE contribution of the nonzero K_S of the M(2) sublattice. In this geometry, $\rho_{xy}(T, H)$ does not follow the saturation behavior of m(H) for $T < T_2 = 171$ K (compare Figs. 3 and 4), but exhibits a strong decrease with increasing field for $|H| > H^*$, which marks a sharp change in $d\rho_{xy}(H)/dH$ (Fig. 4).

The unusual nonmonotonic field dependence of ρ_{xy} can be explained in terms of field suppression of K_s . At low fields the intermediate canting angle of noncollinear M(2) spins induces a relatively large K_s and resulting THE; further increases of field align the M(2) spins along *H*, which reduces K_s and ρ_{xy} . BaMn_{2.49}Ru_{3.51}O₁₁ is remarkable in that the peak in ρ_{xy} approximately *triples in magnitude* between T=130 and 10 K in fields well below 1 T (Fig. 4). Moreover, for T > 171 K, ρ_{xy} displays a monotonic field dependence typical of ferromagnets (lower inset, Fig. 4), implying there is *no* K_s to drive a THE for $T_2 < T < T_1$.

Magnetic susceptibility measurements on BaFe_{3.26}Ti_{2.74}O₁₁ single-crystal reveal two magnetic transitions for applied field H oriented both parallel and perpendicular to the c-axis: A slow increase of $\chi(T)$ below T₁ =250 K is followed by a maximum at T_2 =85 K, with a distinct magnetic anisotropy that indicates the c-axis is the easy direction, as shown in Fig. 5. The rapid increase of m(H) in low fields and near-linear variation without saturation at $\mu_0 H > 1.2$ T (both above and below 85 K) are typical of a canted antiferromagnet or ferrimagnet.¹⁰ Coercive fields $\mu_0 H_{c\perp} = 1.0$ T and $\mu_0 H_{c\parallel} = 0.75$ T perpendicular and parallel to the c-axis, respectively, are observed at T=5 K; this anisotropy is greatly reduced ($\mu_0 H_{c\perp} = \mu_0 H_{c\parallel} = 4.5 \times 10^{-4}$ T) at T=130 K (inset, Fig. 5). Above 250 K, the susceptibility $\chi(T)$ is isotropic, and m(H) varies linearly with magnetic field. A Curie–Weiss fit of $\chi(T)$ in the temperature interval 260 K \leq T \leq 360 K yields an effective magnetic moment $\mu_{\rm eff}$ =4.73 $\mu_{\rm B}$ and a positive Weiss temperature $\theta_{\rm P}$ =220 K that indicates dominant FM interactions. The basal-plane electrical resistance of BaFe_{3.26}Ti_{2.74}O_{11} is $R_{300} \sim 20$ M\Omega,

FIG. 5. Temperature dependence of the FC dc magnetic susceptibility $\chi(T)$ of single-crystal BaFe_{3.26}Ti_{2.74}O₁₁ for $H \perp c$ and $H \parallel c$ at applied magnetic field $\mu_0 H$ =0.1 T. Inset shows the magnetic moment *m* vs $\mu_0 H$ at temperature *T*=130 K.

which demonstrates the complete replacement of Ru (4delectrons) with more localized Ti (3d-electrons) results in a strongly gapped insulator.

In summary, single crystals of BaMn2.49Ru3.51O11 and BaFe_{3.26}Ti_{2.74}O₁₁ exhibit complex magnetic order driven by competing interactions on a frustrated lattice with a noncentrosymmetric structure. The striking behavior of BaMn_{2.49}Ru_{3.51}O₁₁ reflects frustrated two-dimensional spin correlations for 171 K<T<183 K, which favor an inplane, "q=0" structure with zero K_S on the Kagomé sublattice, consistent with neutron diffraction data³ for polycrystalline BaMn₂Ru₄O₁₁. A c-axis moment grows below T₂ =171 K, caused by Dzyaloshinsky-Moriya interactions^{8,5} appropriate for spins in a noncentrosymmetric structure with nonzero K_S . The slow saturation of m(T,H) with decreasing T, or increasing $H \perp c$, indicates an evolution from canted spins with AFM correlations within the Kagomé plane, to a collinear FM arrangement. The unusually large, nonmonotonic field dependence of ρ_{xy} observed in single-crystal $BaMn_{2,49}Ru_{3,51}O_{11}$ for $J \parallel H \perp c$ also results from the fielddependent canting of the M(2) spins out of the Kagomé plane, which creates a large THE driven by nonzero scalar spin chirality that can be controlled and suppressed by only modest applied fields < 1 T.

ACKNOWLEDGEMENT

Research at the University of Kentucky was supported by U.S. DOE Grant No. DOE-FGØ2-97ER45653.

- ¹Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura, Science **291**, 2573 (2001).
- ²M. C. Cadee and D. J. W. Ijdo, J. Solid State Chem. **52**, 302 (1984).
- ³M. L. Foo, Q. Huang, J. W. Lynn, W.-L. Lee, T. Klimczuk, I. S. Hage-
- mann, N. P. Ong, and R. J. Cava, J. Solid State Chem. 179, 563 (2006).
 ⁴B. Schüpp-Niewa, L. Shlyk, S. Kryukov, L. E. De Long, and R. Niewa, Z. Naturforsch. B 62, 753 (2007).
- ⁵L. Shlyk, S. Kryukov, B. Schüpp-Niewa, R. Niewa, and L. E. De Long, Adv. Mater. **20**, 1315 (2008).
- ⁶R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).
- ⁷L. Berger, Phys. Rev. B 2, 4559 (1970).
- ⁸I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
- ⁹T. Moriya, Phys. Rev. **120**, 91 (1960).
- ¹⁰R. L. Carlin, *Magnetochemistry* (Springer-Verlag, Berlin, 1986).