[Complex magnetic order and spin chirality on the Kagomé lattices of](http://dx.doi.org/10.1063/1.3364060) BaMn2.49Ru3.51O11 [and BaFe3.26Ti2.74O11](http://dx.doi.org/10.1063/1.3364060)

L. Shlyk,^{1,a)} S. Parkin,² and L. E. De Long¹
¹Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA 2 *Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA*

Presented 21 January 2010; received 30 October 2009; accepted 15 January 2010; published online 21 April 2010)

Anomalies in the magnetization of single-crystal BaMn_{2.49}Ru_{3.51}O₁₁ at temperatures T₁=183 K, $T_2=171$ K, and $T_3=128$ K, signal complex magnetic order induced by competing ferro- and antiferromagnetic correlations and magnetic frustration within the Kagomé (hexagonal ab-) plane. The T_2 - and T_3 -anomalies and unconventional transverse magnetoresistance are observed only for applied field *H* directed in the Kagomé plane, suggesting a topological Hall effect is generated by nonzero scalar chirality of spins canted out of the Kagomé plane, but is suppressed in a collinear structure induced by only modest $H \perp c$. In contrast, the magnetic susceptibility of an isostructural BaFe_{3.26}Ti_{2.74}O₁₁ single-crystal reveals magnetic transitions at T₁=250 K and T₂=85 K for *H* oriented both parallel and perpendicular to the c-axis. The rapid low-field increase of the magnetic moment at $\mu_0 H \leq 1$ T, followed by nonsaturation with a near-linear increase at high fields, are typical of a canted antiferromagnet or ferrimagnet. © *2010 American Institute of Physics*. [doi[:10.1063/1.3364060](http://dx.doi.org/10.1063/1.3364060)]

Frustration of antiferromagnetic (AFM) interactions by crystallographic symmetry is of current interest, and is marked by highly degenerate, noncollinear magnetic ground states that break chiral symmetry. A representative frustrated system is a Kagomé lattice formed from corner-sharing triangles. The R-type ferrites $BaM_2Ru_4O_{11}$ (M=Fe, Mn, and Co) crystallize in the hexagonal $P6_3 / mmc$ structure^{2[,3](#page-2-1)} in which layers of edge-sharing octahedra $M(2)O_6$ form a Kagomé sublattice within the a-b plane. The Kagomé planes are connected along the c-axis by face-sharing $M(1)O_6$ octahedra and trigonal bipyramids $M(3)O_5$ (Fig. [1](#page-0-0)).

 $(Ba, Sr)M_{2\pm x}Ru_{4\mp x}O_{11}$ (M=Fe or Co) exhibit electric and magnetic properties that can be widely varied by simple chemical substitution of 3d-elements, or by varying the relative concentration of 3d-elements and 4d-Ru over a wide homogeneity range. $4,5$ $4,5$ In spite of potential magnetic frustration on the Kagomé sublattice, some of these compositions exhibit a unique coexistence of narrow-gap semiconductivity with ferrimagnetic order at unusually high critical temperatures $T_C \sim 480$ K. These properties, together with a large anomalous Hall effect, make R-type ferrites attractive for spintronic applications.

We have found R-type ferrites of composition $BaM_{2\pm x}T_{4\mp x}O_{11}$ (M=Fe and Mn; T=Ru and Ti) exist over a homogeneity range generated by variable occupation of the octahedral $M(1)$ and $M(2)$ sites by 3d (Fe, Ti, and Mn) and 4d (Ru) elements, whereas the trigonal-pyramidal M(3) sites are exclusively occupied by 3d (Fe or Mn) elements.⁵ Here we focus on $BaMn_{2.49}Ru_{3.51}O_{11}$ and $BaFe_{3.26}Ti_{2.74}O_{11}$ single crystals that undergo several successive magnetic transitions.

Single crystals with maximum basal-plane width 1.5 mm and thickness around 0.05 mm were grown from a BaCl₂ flux, as described elsewhere.⁴ Sample compositions were determined from x-ray refinements and microprobe analysis. X-ray diffraction data were collected at $T=90.0(2)$ K on a Nonius Kappa CCD Diffractometer using Mo K α radiation. The final full-matrix, least-squares refinement converged to $R_1=0.0375\%$, w $R_2=0.1040\%$ with refined lattice parameters $a=5.8370(8)$ Å, \hat{A} , $c=13.616(3) \hat{A}$ for BaFe_{3.26}Ti_{2.74}O₁₁, and to R₁=0.0143%, wR₂=0.0369% [with refined lattice parameters $a = 5.8754(8)$ Å, $c = 13.515(3)$ Å] for Ba $Mn_{2,49}Ru_{3,51}O_{11}$. The dc magnetic moment of oriented single crystals was measured over a temperature range 5 K $\leq T \leq 300$ K in applied magnetic fields $0 \leq \mu_0 H \leq 5$ T using a Quantum Design MPMS5 Magnetometer. Longitudinal and transverse magnetoresistivities, $\rho_{xx}(T)$ and $\rho_{xy}(H,T)$, respec-

FIG. 1. Crystal structure of R-type ferrites. The $M(1)$ (4e) sites are predominantly occupied by Ru, the M(2) (6g) sites on the Kagomé sublattice are occupied by Ru and appropriate 3d-elements, and the $M(3)$ (2d) sites are predominantly occupied by the appropriate 3d-elements (Refs. [4](#page-2-2) and [5](#page-2-3)).

a)Author to whom correspondence should be addressed. Tel.: 859 218 6526. Electronic mail: lshlyk@gmail.com.

FIG. 2. Temperature dependence of the ZFC magnetization $M_{\perp}(T,H)$ of single-crystal Ba $Mn_{2.49}Ru_{3.51}O_{11}$. Arrows designate magnetic transition temperatures. The solid line illustrates the linear dependence below T_3 =128 K. The lower inset: ZFC magnetization $M_{\parallel}(T)$ vs temperature of single-crystal BaMn_{2.49}Ru_{3.51}O₁₁. ZFC mode is determined as a mode with a small residual field of only a few oersteds after complete degaussing of the superconducting quantum interference device.

tively, were measured using the MPMS5 external device control option and a dc four-probe method with currents 5 mA \leq *J* \leq 20 mA directed in the a-b plane.

ZFC data for the magnetization $M_{\parallel}(T)$ of BaMn_{2.49}Ru_{3.51}O₁₁ measured for *H*||c-axis (Fig. [2,](#page-1-0) inset) reveal a spontaneous magnetization that reflects ferromagnetic (FM) correlations below T_c =183 K, consistent with previous polycrystalline data³ (zero-field-cooled (ZFC) and fieldcooled (FC) $M(T, H)$ curves are identical in their shape, indicating magnetic domain formation does not complicate these data). The magnetization curves for $H\|c$ are characteristic of a soft FM material with a coercive field H_{cl} $=400$ Oe at $T=5$ K (Fig. [3,](#page-1-1) upper inset). Distinct magnetic anisotropy (see Figs. 2 and 3) indicates the c-axis is the easy direction.

The ZFC magnetization $M_{\perp}(T,H)$ exhibits three striking anomalies for $H \perp c$: an abrupt increase just below T_1 =183 K, a cusp at T_2 =171 K, and a sharp minimum at T_3 =128 K that marks a strong, linear increase of $M_T(T,H)$ with decreasing $T < T_3$, as shown in Fig. [2.](#page-1-0) The sharp decrease of $M_1(T,H)$ below $T_2=171$ K indicates dominant

FIG. 3. Magnetic moment m_{\perp} vs applied field $H \perp c$ for several temperatures *T* for single-crystal Ba $Mn_{2.49}Ru_{3.51}O_{11}$. The lower inset shows $\chi_{\perp}(T,H)$ at different applied fields $\mu_{\rm o}H \perp \text{c}$. The upper inset shows $m_{\parallel}(T,H)$ vs applied field $\mu_0 H \parallel c$ for several temperatures.

AFM interactions, whereas the linear increase of $M_{\perp}(T,H)$ below $T_3=128$ K reflects residual FM correlations. The lower inset in Fig. [3](#page-1-1) shows the susceptibility $\chi_{\perp}(T,H)$ in fields 0.01 T $\leq \mu_0 H \leq 1$ T, which slowly broaden and shift the T_2 -anomaly to lower temperatures, but rapidly make the T_3 -anomaly indistinct.

The field dependences of the magnetic moment $m_{\perp}(T,H)$ shown in Fig. [3](#page-1-1) reflect two distinct regions for *T* 167 K: a slow, linear increase of m_{\perp} ends at a critical field $H^*(T)$ (whose magnitude increases with decreasing T) at which dm_{\perp}/dH is discontinuous, and is followed by a saturated regime above $H^*(T)$. This behavior resembles that of simple AFM materials, where $m(H)$ barely changes in the low-field collinear phase, then abruptly jumps into a canted structure at a spin flop transition followed by a strong linear increase of $m(H)$ ending abruptly at FM saturation. (Here, an applied $H \perp c$ acts in conjunction with the exchange field along the easy c-axis to create the spin flop for the spins frustrated within the a-b planes). The strong linear increase and absence of any jump in $m_\perp(H)$ in Fig. [3](#page-1-1) suggests a canted spin arrangement (dominated by AFM correlations) is present below $T_2 = 171$ K. The low-field, linear $m_\perp(H)$ is replaced by nonlinear FM behavior above 171 K, confirming FM correlations dominate AFM correlations for $T>T_2$.

The above observations signal complex magnetic order, consistent with previous powder neutron diffraction data² for $polycrystal line$ $BaMn₂Ru₄O₁₁$: the M(1) sites were judged nonmagnetic, the M(3) sites ordered ferromagnetically parallel to the c-axis, and the $M(2)$ sites ordered in a compensated triangular motif, characteristic of a frustrated lattice with AFM nearest-neighbor interactions. At *T*=100 K, the data were refined with an *in-plane*, "q=0" structure having uniform *vector chirality* $K_V = [2/(3\sqrt{3})](S_1 \times S_2 + S_2 \times S_3 + S_3 \times S_1)$ (where S_i [i=1–3] are spins located at the vertices of a Kagomé triangular plaquette). Below 100 K, the M(2) spins cant out of the a-b plane, inducing nonzero *scalar chirality* $K_S = S_1 \cdot (S_2 \times S_3)$, and a continuous increase of magnetic peak intensity that culminates in an ordered moment *m* =3.3 μ_{B} at *T*=3.6 K.

The spin canting out of the Kagomé plane can generate a topological Hall effect (THE) driven by nonzero K_S .^{[1](#page-2-4)} The Hall resistivity of ferromagnets is usually expressed as

$$
\rho_{xy} = R_0 H + 4\pi MR_s,\tag{1}
$$

where R_o is the "normal" Hall coefficient resulting from the Lorentz force and R_s is the "anomalous" Hall coefficient that is dependent upon the magnetization *M* and spin-orbit coupling. $6,7$ $6,7$ The low-field Hall effect of FM materials is dominated by the anomalous term (AHE) identified by a field dependence that follows $M(T,H)$ below T_c ^{[6](#page-2-5)}. We measured $\rho_{xy}(H, T)$ for BaMn_{2.49}Ru_{3.51}O₁₁ with in-plane current $J \perp H$ llc (easy direction), which should induce a collinear state that suppresses spin chirality and the THE. As expected, ρ_{xy} exhibits a nonlinear field dependence only for *H* ≤ 1.0 T where the AHE dominates (upper inset, Fig. [4](#page-2-7)). Above 1.0 T, both $m_{\parallel}(H)$ (upper inset, Fig. [3](#page-1-1)) and ρ_{xy} exhibit a weakly linear normal behavior.

In order to minimize the normal Hall term due to the Lorentz force, we employed an unconventional configuration

FIG. 4. Transverse resistivity ρ_{xy} vs magnetic field $H \perp c$ for single-crystal BaMn_{2.49}Ru_{3.51}O₁₁ at different temperatures. The upper inset shows ρ_{xy} vs magnetic field $H\|c$ (easy axis) at temperature $T=5$ K. The lower inset shows ρ_{xy} for a BaMn_{2.49}Ru_{3.51}O₁₁ single-crystal at $T=174$ K and $H \perp c$.

with $J \parallel H \perp c$, where $\rho_{xy}(T,H)$ should depend only on the AHE of the c-axis magnetization on the $M(2)$ and $M(3)$ sites, and the THE contribution of the nonzero K_S of the $M(2)$ sublattice. In this geometry, $\rho_{xy}(T,H)$ does not follow the saturation behavior of $m(H)$ for $T < T_2 = 171$ K (compare Figs. [3](#page-1-1) and [4](#page-2-7)), but exhibits a strong decrease with increasing field for $|H| > H^*$, which marks a sharp change in $d\rho_{xy}(H)/dH$ (Fig. [4](#page-2-7)).

The unusual nonmonotonic field dependence of ρ_{xy} can be explained in terms of field suppression of K_S . At low fields the intermediate canting angle of noncollinear $M(2)$ spins induces a relatively large K_S and resulting THE; further increases of field align the $M(2)$ spins along H , which reduces K_S and ρ_{xy} . BaMn_{2.49}Ru_{3.51}O₁₁ is remarkable in that the peak in ρ_{xy} approximately *triples in magnitude* between $T = 130$ and 10 K in fields well below 1 T (Fig. [4](#page-2-7)). Moreover, for $T > 171$ K, ρ_{xy} displays a monotonic field dependence typical of ferromagnets (lower inset, Fig. [4](#page-2-7)), implying there is *no* K_S to drive a THE for $T_2 < T < T_1$.

Magnetic susceptibility measurements on $BaFe_{3.26}Ti_{2.74}O₁₁ single-crystal reveal two magnetic transi$ tions for applied field *H* oriented both parallel and perpendicular to the c-axis: A slow increase of $\chi(T)$ below T₁ =250 K is followed by a maximum at T_2 =85 K, with a distinct magnetic anisotropy that indicates the c-axis is the easy direction, as shown in Fig. [5.](#page-2-8) The rapid increase of $m(H)$ in low fields and near-linear variation without saturation at $\mu_0 H > 1.2$ T (both above and below 85 K) are typical of a canted antiferromagnet or ferrimagnet.¹⁰ Coercive fields μ_0H_{c-1} = 1.0 T and μ_0H_{c-1} = 0.75 T perpendicular and parallel to the c-axis, respectively, are observed at $T=5$ K; this anisotropy is greatly reduced $(\mu_0 H_{c\perp} = \mu_0 H_{c\parallel} = 4.5 \times 10^{-4}$ T) at $T=130$ K (inset, Fig. [5](#page-2-8)). Above 250 K, the susceptibility $\chi(T)$ is isotropic, and $m(H)$ varies linearly with magnetic field. A Curie–Weiss fit of $\chi(T)$ in the temperature interval $260 K < T < 360 K$ yields an effective magnetic moment μ_{eff} =4.73 μ_{B} and a positive Weiss temperature θ_{P} =220 K that indicates dominant FM interactions. The basal-plane electrical resistance of BaFe_{3.26}Ti_{2.74}O₁₁ is R₃₀₀ \sim 20 M Ω ,

FIG. 5. Temperature dependence of the FC dc magnetic susceptibility $\chi(T)$ of single-crystal BaFe_{3.26}Ti_{2.74}O₁₁ for $H \perp c$ and $H||c$ at applied magnetic field $\mu_0H=0.1$ T. Inset shows the magnetic moment *m* vs μ_0H at temperature $T = 130$ K.

which demonstrates the complete replacement of Ru (4delectrons) with more localized Ti (3d-electrons) results in a strongly gapped insulator.

In summary, single crystals of $BaMn_{2.49}Ru_{3.51}O₁₁$ and $BaFe_{3.26}Ti_{2.74}O_{11}$ exhibit complex magnetic order driven by competing interactions on a frustrated lattice with a noncentrosymmetric structure. The striking behavior of $BaMn_{2.49}Ru_{3.51}O_{11}$ reflects frustrated two-dimensional spin correlations for 171 $K < T < 183$ K, which favor an inplane, "q=0" structure with zero K_S on the Kagomé sublattice, consistent with neutron diffraction data³ for polycrystalline BaMn₂Ru₄O₁₁. A c-axis moment grows below T₂ =171 K, caused by Dzyaloshinsky–Moriya interactions^{8,5} appropriate for spins in a noncentrosymmetric structure with nonzero K_S . The slow saturation of $m(T,H)$ with decreasing *T*, or increasing $H \perp c$, indicates an evolution from canted spins with AFM correlations within the Kagomé plane, to a collinear FM arrangement. The unusually large, nonmonotonic field dependence of ρ_{xy} observed in single-crystal BaMn_{2.49}Ru_{3.51}O₁₁ for $J \parallel H \perp c$ also results from the fielddependent canting of the M(2) spins out of the Kagomé plane, which creates a large THE driven by nonzero scalar spin chirality that can be controlled and suppressed by only modest applied fields ≤ 1 T.

ACKNOWLEDGEMENT

Research at the University of Kentucky was supported by U.S. DOE Grant No. DOE-FGØ2-97ER45653.

- ¹Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura, [Science](http://dx.doi.org/10.1126/science.1058161) **291**, 2573 (2001).
- ²M. C. Cadee and D. J. W. Ijdo, [J. Solid State Chem.](http://dx.doi.org/10.1016/0022-4596(84)90013-6) **52**, 302 (1984).
- 3 M. L. Foo, Q. Huang, J. W. Lynn, W.-L. Lee, T. Klimczuk, I. S. Hage-mann, N. P. Ong, and R. J. Cava, [J. Solid State Chem.](http://dx.doi.org/10.1016/j.jssc.2005.11.014) **179**, 563 (2006).
- ⁴B. Schüpp-Niewa, L. Shlyk, S. Kryukov, L. E. De Long, and R. Niewa, Z. Naturforsch. B 62 , 753 (2007).
- 5 L. Shlyk, S. Kryukov, B. Schüpp-Niewa, R. Niewa, and L. E. De Long, [Adv. Mater.](http://dx.doi.org/10.1002/adma.200701951) **20**, 1315 (2008).
- ⁶R. Karplus and J. M. Luttinger, *[Phys. Rev.](http://dx.doi.org/10.1103/PhysRev.95.1154)* **95**, 1154 (1954).
- ⁷L. Berger, *[Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.2.4559)* 2, 4559 (1970).
- ⁸I. Dzyaloshinsky, [J. Phys. Chem. Solids](http://dx.doi.org/10.1016/0022-3697(58)90076-3) **4**, 241 (1958).
- ⁹T. Moriya, *[Phys. Rev.](http://dx.doi.org/10.1103/PhysRev.120.91)* **120**, 91 (1960).
- ⁹T. Moriya, *Phys. Rev.* **120**, 91 (1960).
¹⁰R. L. Carlin, *Magnetochemistry* (Springer-Verlag, Berlin, 1986).