## Partial Fluorination Overcomes Herringbone Crystal Packing in Small Polycyclic Aromatics<sup>†</sup>

## Don M. Cho, Sean R. Parkin, and Mark D. Watson\*

Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 mdwatson@uky.edu

Received January 5, 2005

## ABSTRACT



We report the synthesis and characterization of partially fluorinated condensed tetracyclic aromatic compounds. Typical edge-to-face/herringbone packing of nonfluorinated analogues is replaced here by columnar stacks with disk planes orthogonal to the columnar axes. Enhanced  $\pi$ -overlap results with overlaid electron-poor and -rich regions.

Polycyclic aromatic hydrocarbons tend toward edge-to-face (herringbone) solid-state packing motifs.<sup>1</sup> Face-to-face stacking is favored with increasing ratio of  $\pi$ -surface to circumference or with peripheral substituents. On the other hand, the "soft" interaction between arenes (Ar) and highly fluorinated arenes (ArF) leads to alternating face-to-face stacks. This principle appears nearly universally applicable based on the broad range of molecular frameworks with which it has been demonstrated.<sup>2</sup> Materials with covalently bound Ar and ArF units crystallize likewise with ArF portions stacked face-to-face with Ar portions. In addition to this supramolecular aspect, (partially) fluorinated  $\pi$ -systems show practical promise as active components in organic electronics, with facile electron injection and transport.<sup>3</sup>

10.1021/ol050019c CCC: \$30.25 © 2005 American Chemical Society Published on Web 02/18/2005

The question addressed here is whether Ar–ArF interactions operate in partially fluorinated, *fused*  $\pi$ -systems, or will the effect be "smeared out" across the  $\pi$ -surface? Based on molecular electrostatic potential<sup>4</sup> (MEP, Figure 1), one would

ORGANIC LETTERS

2005 Vol. 7, No. 6

1067-1068



Figure 1. MEP maps of 2a (left) and 2c (right).<sup>4</sup>

predict face-to-face stacking in a head-to-tail fashion. As test cases, we chose naphthodithiophenes 2 and triphenylene 3 for which we present here synthesis, preliminary characterization, and single-crystal analysis.

Naphthodithiophenes 2 were prepared in two steps from readily available starting materials via modified published<sup>5</sup>

<sup>&</sup>lt;sup>†</sup> Dedicated to Prof. Dr. Klaus Müllen.

<sup>(1) (</sup>a)Desiraju, G. R.; Gavezotti, A. Acta Crystallogr. B. **1989**, 45, 473– 82. (b) Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. J. Chem. Soc., Perkin Trans. 2 **2001**, 651–69.

<sup>(2) (</sup>a) Ponzini, F.; Zagha, R.; Hardcastle, K.; Siegel, J. S. Angew. Chem., Int. Ed. 2000, 39, 2323–25. (b) Gillard, R. E.; Stoddart, J. F.; White, A. J. P.; Williams, B. J.; Williams, D. J. J. Org. Chem. 1996, 61, 4504–05. (c) Bunz, U. H. F.; Enkelmann, V. Chem. Eur. J. 1999, 5, 263–66. (d) Weck, M.; Dunn, A. R.; Matsumoto, K.; Coates, G. W.; Lobkovsky, E. B.; Grubbs, R. H. Angew. Chem., Int. Ed. 1999, 38, 2741–45.

<sup>(3) (</sup>a) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Katz, H. E.; Marks, T. J. *Angew. Chem., Int. Ed.* **2003**, *42*, 3900–03. (b) Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue, Y.; Sato, F.; Tokito, S. J. *Am. Chem. Soc.* **2004**, *126*, 8138–40.

<sup>(4)</sup> Molecular Electrostatic Potential maps generated using ViewerLite.
(5) Tovar, J. D.; Rose, A.; Swager, T. M. J. Am. Chem. Soc. 2002, 124, 7762–69.



procedures (Scheme 1). At 110 °C, the Stille coupling gave poor conversions even after 3 days. When conducted at 150 °C in a sealed vessel, good yields were realized within 12 h. Proper conditions<sup>6</sup> for the cyclizations such as those that follow depend on the substitution pattern: Mallory-type photocyclization<sup>7</sup> was effective for **2**, while chemical oxidation with FeCl<sub>3</sub> resulted in extensive side reactions including polymerization.

The synthesis of **3** via benzyne intermediates has been reported with minimal characterization.<sup>8</sup> We prepared a tetrafluoro-*o*-terphenyl analogously to compounds **1**, but it resisted fusion by either of the methods described above. Target **3** could be prepared, however, in one pot via doublenucleophilic attack of 2,2'-dilithiobiphenyl on hexafluorobenzene. Little product is observed by GC–MS after 12 h in ether, but starting material is consumed rapidly after addition of DME.<sup>9</sup>

Crystalline packing of compounds **2a,c** and **3** is shown in Figure 2. A typical herringbone-like motif is observed for **2c**, similar to that of nonfluorinated triphenylene.<sup>10</sup> However, both **2a** and **3** form face-to-face columnar stacks with disk planes orthogonal to the stacking axis. This arrangement could prove crucial to performance as organic semiconductors.<sup>11</sup> Compound **3** is significantly distorted from planarity, as are perhalogenated triphenylenes;<sup>12</sup> however, this does not alter the packing motif.



**Figure 2.** Crystal packing for **2a**,**c** and **3**. Views parallel (top) and perpendicular (bottom) to molecular planes. Arrows indicate lateral orientation of fluorinated "heads".

While  $C_6H_6:C_6F_6$  cocrystals consist of alternating stacks with essentially eclipsed rings, other Ar:ArF cocrystals display variable lateral offsets between successive disks, correlating to MEP's or quadrupole moments.<sup>13</sup> Despite differing electronic structures, **2a** and **3** stack with nearly identical offsets (Figure 2, bottom) with the fluorinated rings bisected by C–C bonds of successive molecules. Their  $\pi$ -overlap is much increased compared to **2c**.

Compound **2b** is our first attempt at a thermotropic liquid crystal exploiting this design. At room temperature, the alkyl chains of **2b** interdigitate the stacks, limiting  $\pi$ -overlap between every second and third disk to just one peripheral bond. Within dimer pairs, face-to-face stacking is similar to **2a**, but with lateral offsets approaching that of ABAB/ hexagonal crystalline graphite (see Supp Info).

Future studies will involve (opto)electronic characterization of these materials and various substituted derivatives as well as analogues with more fused rings.

**Acknowledgment.** We thank the University of Kentucky Research Foundation for funding this research.

**Supporting Information Available:** Experimental details and spectroscopic and crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

OL050019C

<sup>(6)</sup> Cammidge, A. N.; Gopee, H. J. Mater. Chem. 2001, 11, 2773–83.
(7) Kellogg, R.; Groen, M. B.; Wynberg, H. J. Org. Chem. 1967; 32: 3093–3100.

<sup>(8)</sup> Beaumont, C. A.; Jones, J. B.; Brown, D. S.; Massey, A. G.; Watkin, J. J. Organomet. Chem. **1988**, 344, 1–8.

<sup>(9)</sup> Coe, P. L.; Tatlow, J. C.; Terrell, R. C. J. Chem. Soc. C 1967, 2626–28.

<sup>(10)</sup> Vand, V.; Pepinsky, R. Acta Crystallogr. 1954, 7, 595.

<sup>(11)</sup> Bredas, J. L.; Calbert, J. P.; da Silva Filho, D. A.; Cornil, J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5804–09.

<sup>(12) (</sup>a) Shibata, K.; Kulkarni, A. A.; Ho, D. M.; Pascal, R. A., Jr. J. Am. Chem. Soc. **1994**, 116, 5983–4. (b) Hursthouse, M. B.; Smith, V. B.; Massey, A. G. J. Fluorine Chem. **1977**, 10, 145–55.

<sup>(13) (</sup>a) Collings, J. C.; Roscoe, K. P.; Robins, E. G.; Batsanov, A. S.;
Stimson, L. M.; Howard, J. A. K.; Clark, S. J.; Marder, T. B. *New. J. Chem.* **2002**, 26, 1740–46. (b) Williams, J. H. *Acc. Chem. Res.* **1993**, 26, 593–98.