Partial Fluorination Overcomes Herringbone Crystal Packing in Small Polycyclic Aromatics†

Don M. Cho, Sean R. Parkin, and Mark D. Watson*

Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 mdwatson@uky.edu

Received January 5, 2005

ABSTRACT

We report the synthesis and characterization of partially fluorinated condensed tetracyclic aromatic compounds. Typical edge-to-face/herringbone packing of nonfluorinated analogues is replaced here by columnar stacks with disk planes orthogonal to the columnar axes. Enhanced *π***-overlap results with overlaid electron-poor and -rich regions.**

Polycyclic aromatic hydrocarbons tend toward edge-to-face (herringbone) solid-state packing motifs.¹ Face-to-face stacking is favored with increasing ratio of *π*-surface to circumference or with peripheral substituents. On the other hand, the "soft" interaction between arenes (Ar) and highly fluorinated arenes (ArF) leads to alternating face-to-face stacks. This principle appears nearly universally applicable based on the broad range of molecular frameworks with which it has been demonstrated.² Materials with covalently bound Ar and ArF units crystallize likewise with ArF portions stacked face-to-face with Ar portions. In addition to this supramolecular aspect, (partially) fluorinated *π*-systems show practical promise as active components in organic electronics, with facile electron injection and transport.3

The question addressed here is whether $Ar-ArF$ interactions operate in partially fluorinated, *fused π*-systems, or will the effect be "smeared out" across the *π*-surface? Based on molecular electrostatic potential⁴ (MEP, Figure 1), one would

ORGANIC LETTERS

2005 Vol. 7, No. 6 ¹⁰⁶⁷-**¹⁰⁶⁸**

Figure 1. MEP maps of **2a** (left) and **2c** (right).4

predict face-to-face stacking in a head-to-tail fashion. As test cases, we chose naphthodithiophenes **2** and triphenylene **3** for which we present here synthesis, preliminary characterization, and single-crystal analysis.

Naphthodithiophenes **2** were prepared in two steps from readily available starting materials via modified published⁵

[†] Dedicated to Prof. Dr. Klaus Müllen.

^{(1) (}a)Desiraju, G. R.; Gavezotti, A. *Acta Crystallogr. B*. **¹⁹⁸⁹**, *⁴⁵*, 473- 82. (b) Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. *J. Chem. Soc., Perkin Trans. 2* **²⁰⁰¹**, 651-69.

^{(2) (}a) Ponzini, F.; Zagha, R.; Hardcastle, K.; Siegel, J. S. *Angew. Chem., Int. Ed*. **²⁰⁰⁰**, *³⁹*, 2323-25. (b) Gillard, R. E.; Stoddart, J. F.; White, A. J. P.; Williams, B. J.; Williams, D. J. *J. Org. Chem*. **¹⁹⁹⁶**, *⁶¹*, 4504-05. (c) Bunz, U. H. F.; Enkelmann, V. *Chem. Eur. J*. **¹⁹⁹⁹**, *⁵*, 263-66. (d) Weck, M.; Dunn, A. R.; Matsumoto, K.; Coates, G. W.; Lobkovsky, E. B.; Grubbs, R. H. *Angew. Chem., Int. Ed*. **¹⁹⁹⁹**, 38, 2741-45.

^{(3) (}a) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Katz, H. E.; Marks, T. J. *Angew. Chem., Int. Ed*. **²⁰⁰³**, *⁴²*, 3900-03. (b) Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue, Y.; Sato, F.; Tokito, S. *J. Am. Chem. Soc*. **²⁰⁰⁴**, *¹²⁶*, 8138-40.

⁽⁴⁾ Molecular Electrostatic Potential maps generated using ViewerLite. (5) Tovar, J. D.; Rose, A.; Swager, T. M. *J. Am. Chem. Soc*. **2002**, *124*, ⁷⁷⁶²-69.

procedures (Scheme 1). At 110 °C, the Stille coupling gave poor conversions even after 3 days. When conducted at 150 °C in a sealed vessel, good yields were realized within 12 h. Proper conditions⁶ for the cyclizations such as those that follow depend on the substitution pattern: Mallory-type photocyclization7 was effective for **2**, while chemical oxidation with FeCl₃ resulted in extensive side reactions including polymerization.

The synthesis of **3** via benzyne intermediates has been reported with minimal characterization.8 We prepared a tetrafluoro-*o*-terphenyl analogously to compounds **1**, but it resisted fusion by either of the methods described above. Target **3** could be prepared, however, in one pot via doublenucleophilic attack of 2,2′-dilithiobiphenyl on hexafluorobenzene. Little product is observed by GC-MS after 12 h in ether, but starting material is consumed rapidly after addition of DME.9

Crystalline packing of compounds **2a**,**c** and **3** is shown in Figure 2. A typical herringbone-like motif is observed for **2c**, similar to that of nonfluorinated triphenylene.10 However, both **2a** and **3** form face-to-face columnar stacks with disk planes orthogonal to the stacking axis. This arrangement could prove crucial to performance as organic semiconductors.11 Compound **3** is significantly distorted from planarity, as are perhalogenated triphenylenes;¹² however, this does not alter the packing motif.

Figure 2. Crystal packing for **2a**,**c** and **3**. Views parallel (top) and perpendicular (bottom) to molecular planes. Arrows indicate lateral orientation of fluorinated "heads".

While C_6H_6 : C_6F_6 cocrystals consist of alternating stacks with essentially eclipsed rings, other Ar:ArF cocrystals display variable lateral offsets between successive disks, correlating to MEP's or quadrupole moments.¹³ Despite differing electronic structures, **2a** and **3** stack with nearly identical offsets (Figure 2, bottom) with the fluorinated rings bisected by C-C bonds of successive molecules. Their *π*-overlap is much increased compared to **2c**.

Compound **2b** is our first attempt at a thermotropic liquid crystal exploiting this design. At room temperature, the alkyl chains of **2b** interdigitate the stacks, limiting π -overlap between every second and third disk to just one peripheral bond. Within dimer pairs, face-to-face stacking is similar to **2a**, but with lateral offsets approaching that of ABAB/ hexagonal crystalline graphite (see Supp Info).

Future studies will involve (opto)electronic characterization of these materials and various substituted derivatives as well as analogues with more fused rings.

Acknowledgment. We thank the University of Kentucky Research Foundation for funding this research.

Supporting Information Available: Experimental details and spectroscopic and crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

OL050019C (6) Cammidge, A. N.; Gopee, H. *J. Mater. Chem*. **²⁰⁰¹**, *¹¹*, 2773-83. (7) Kellogg, R.; Groen, M. B.; Wynberg, H. *J. Org. Chem*. **1967**; *32*: ³⁰⁹³-3100.

⁽⁸⁾ Beaumont, C. A.; Jones, J. B.; Brown, D. S.; Massey, A. G.; Watkin, J. *J. Organomet. Chem.* **¹⁹⁸⁸**, *³⁴⁴*, 1-8.

⁽⁹⁾ Coe, P. L.; Tatlow, J. C.; Terrell, R. C. *J. Chem. Soc. C* **¹⁹⁶⁷**, 2626- 28.

⁽¹⁰⁾ Vand, V.; Pepinsky, R. *Acta Crystallogr*. **1954**, *7*, 595.

⁽¹¹⁾ Bredas, J. L.; Calbert, J. P.; da Silva Filho, D. A.; Cornil, J. *Proc. Natl. Acad. Sci*. *U.S.A.* **²⁰⁰²**, *⁹⁹*, 5804-09.

^{(12) (}a) Shibata, K.; Kulkarni, A. A.; Ho, D. M.; Pascal, R. A., Jr. *J. Am. Chem. Soc*. **¹⁹⁹⁴**, *¹¹⁶*, 5983-4. (b) Hursthouse, M. B.; Smith, V. B.; Massey, A. G. *J. Fluorine Chem.* **¹⁹⁷⁷**, *¹⁰*, 145-55.

^{(13) (}a) Collings, J. C.; Roscoe, K. P.; Robins, E. G.; Batsanov, A. S.; Stimson, L. M.; Howard, J. A. K.; Clark, S. J.; Marder, T. B. *New. J. Chem*. **²⁰⁰²**, *²⁶*, 1740-46. (b) Williams, J. H. *Acc. Chem. Res*. **¹⁹⁹³**, *²⁶*, 593- 98.