

APEX3 Crystallography Software Suite

User Manual

Part Number: DOC-M86-EXX229 V1 Publication Date: 31 May 2016

Innovation with Integrity

SC-XRD

This document covers the APEX3 software suite.

References to this document should be shown as "DOC-M86-EXX229 APEX3 Software User Manual".

© 2016 Bruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711. All world rights reserved.

Notice

The information in this publication is provided for reference only. All information contained in this publication is believed to be correct and complete. Bruker AXS Inc. shall not be liable for errors contained herein, nor for incidental or consequential damages in conjunction with the furnishing, performance, or use of this material. All product specifications, as well as the information contained in this publication, are subject to change without notice.

This publication may contain or reference information and products protected by copyrights or patents and does not convey any license under the patent rights of Bruker AXS Inc. nor the rights of others. Bruker AXS Inc. does not assume any liabilities arising out of any infringements of patents or other rights of third parties. Bruker AXS Inc. makes no warranty of any kind with regard to this material, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, photography, magnetic, or other record without prior written permission of Bruker AXS Inc.

Address comments to:

Technical Publications Department Bruker AXS Inc. 5465 East Cheryl Parkway Madison, Wisconsin 53711-5373 USA

All trademarks and registered trademarks are the sole property of their respective owners. Printed in the U.S.A.

Version History

Version	Date	Changes
1	31 May 2016	Initial release.

Bruker Corporation

40 Manning Road Billerica, MA USA

Phone +1 (978) 663-3660 Fax: +1 (978) 667-5993

E-mail: info@bruker.com www.bruker.com

Bruker AXS Inc.

5465 East Cheryl Parkway Madison, WI 53711-5373 USA

Phone +1 (800) 234-XRAY [9729] Fax +1 (608) 276-3006

E-mail: info.baxs@bruker.com www.bruker.com

Table of Contents

	ADUL	it this User Manual	-1
	1.1	APEX3 Software for Chemical Crystallography	-1
	1.2	The Ylid Crystal 1	-2
	1.3	Terms and Conventions. 1 1.3.1 Typographical Conventions. 1 1.3.2 Equivalent Terms. 1 1.3.3 Notices: Danger, Caution, and Note 1	-2 -2 -3 -3
	1.4	Referenced Documentation1	-4
	1.5	X-ray Safety1	-4
	1.6	License Considerations1	-5
	1.7	Help and Technical Support11.7.1The "What's This?" Help Function11.7.2Technical Support from Bruker Service Centers1	-6 -6 -6
2	APE	(3 Software Overview	-1
2	APE) 2.1	K3 Software Overview 2- Server Programs 2 2.1.1 The Measurement Server 2 2.1.2 BIS Server or BIS 2	- 1 :-1 :-1
2	APE) 2.1 2.2	K3 Software Overview 2 Server Programs 2 2.1.1 The Measurement Server 2 2.1.2 BIS Server or BIS 2 Client Programs 2 2.2.1 APEX3 GUI and Plug-ins. 2 2.2.2 Online and Offline Operation 2 2.2.3 APEX3Server 2	-1 -1 -1 -2 -2 -2
2	APE) 2.1 2.2 2.3	K3 Software Overview2-Server Programs22.1.1The Measurement Server22.1.2BIS Server or BIS2Client Programs22.2.1APEX3 GUI and Plug-ins.22.2.2Online and Offline Operation22.2.3APEX3Server2The Sample Database2	-1 -1 -1 -2 -2 -2 -3 -3

3	Getting	g Started with APEX3 3-1
	3.1	User Access
	3.2	Start APEX3
	3.3	Log In
	3.4	Connect to BIS Server (or BIS Classic)
	3.5	Create a New Sample 3-3
	3.6	Describe the Sample with the Describe Sample Plug-in
	3.7	Shutdown 3-5 3.7.1 Shut Down APEX3 3-5 3.7.2 Shut Down BIS Server 3-5 3.7.3 Stop the Measurement Server 3-5
4	Crysta	I Centering and Screening 4-1
	4.1	Centering the Crystal4-14.1.1Start the Center Crystal Plug-in4-14.1.2Mount the Goniometer Head4-24.1.3Center the Crystal on the Goniometer4-3
	4.2	Checking Crystal Quality 4-9
		4.2.1Start the Screen Crystal Plug-in.4-94.2.2Set up the Scan.4-94.2.3Use the Resolution Circle Tool4-124.2.4Use the Line Tool.4-134.2.5Plot a Rocking Curve.4-144.2.6View Peak Profiles in 3D.4-154.2.7Examples of Poor-Quality Crystals4-16
5	Using	the XPRESSO Plug-in
	5.1	About XPRESSO 5-1
	5.2	Before Using XPRESSO 5-1
	5.3	Start the XPRESSO Plug-in5-15.3.1Information Section5-25.3.2Parameters Section5-6
	5.4	Set XPRESSO's Options5-85.4.1Choose New or Existing Images5-85.4.2Set or Change the Formula5-8
	5.5	Start Data Collection and/or Structure Solution5-95.5.1XPRESSO's Data Collection and/or Structure Solution Process5-9
	5.6	Close the XPRESSO Plug-in 5-9
	5.7	Using XPRESSO in Conjunction with APEX3

		JII
6.1	Determ	nining the Unit Cell
	6.1.1	Start the Determine Unit Cell Plug-in
	6.1.2	Determine the Unit Cell in Automatic Mode
	6.1.3	Manual Mode
6.2	The Re	ciprocal Lattice Viewer Plug-in 6-13
	6.2.1	Start the Reciprocal Lattice Viewer Plug-in
	6.2.2	Views and Tools
	6.2.3	Measuring Distances and Angles
	0.2.4	vinung a .p4p File
6.3	Calcula	ate a Data Collection Strategy
	6.3.1	Start the Calculate Strategy Plug-in
	0.3.2 633	Determine the Runs to be Collected 6-29
	6.3.4	Set the Scan Parameters
61	Run th	e Experiment 6-37
0.4	641	User-Defined Runs and Settings 6-39
	6.4.2	Closing APEX3 or the Project
	6.4.3	Abort the Experiment if Necessary
Data	Integrati	ion and Scaling
7.1	Integra	iting Data
	711	Start the Integrate Images Plug-in
	1.1.1	
	7.1.1	Set the Resolution Limit
	7.1.1 7.1.2 7.1.3	Set the Resolution Limit. 7-2 Select Runs for Integration 7-3
	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	Set the Resolution Limit. 7-2 Select Runs for Integration 7-3 Refinement Options. 7-6 Integration Options. 7-8
	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	Set the Resolution Limit.7-2Select Runs for Integration7-3Refinement Options.7-6Integration Options7-8Start the Integration7-10
7.0	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	Set the Resolution Limit. 7-2 Select Runs for Integration 7-3 Refinement Options. 7-6 Integration Options 7-8 Start the Integration 7-10
7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Scaling	Set the Resolution Limit. 7-2 Select Runs for Integration 7-3 Refinement Options. 7-6 Integration Options 7-8 Start the Integration 7-10 9 Data 7-11 Start the Scale Plug in 7-11
7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Scaling 7.2.1 7.2.2	Set the Resolution Limit.7-2Select Runs for Integration7-3Refinement Options.7-6Integration Options7-8Start the Integration7-10 y Data 7-11Start the Scale Plug-in7-11Set Up the Scale Operation7-11
7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Scaling 7.2.1 7.2.2 7.2.3	Set the Resolution Limit.7-2Select Runs for Integration7-3Refinement Options.7-6Integration Options7-8Start the Integration7-10g Data7-11Start the Scale Plug-in7-11Set Up the Scale Operation7-11Refine the Parameters.7-13
7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Scaling 7.2.1 7.2.2 7.2.3 7.2.4	Set the Resolution Limit.7-2Select Runs for Integration7-3Refinement Options.7-6Integration Options7-8Start the Integration7-10 y Data 7-11Start the Scale Plug-in7-11Set Up the Scale Operation7-11Refine the Parameters.7-13Refine the Error Model7-15
7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Scaling 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	Set the Resolution Limit.7-2Select Runs for Integration7-3Refinement Options.7-6Integration Options7-8Start the Integration7-10g Data7-11Start the Scale Plug-in7-11Set Up the Scale Operation7-11Refine the Parameters.7-13Refine the Error Model7-15Examine the Diagnostic Plots7-17
7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Scaling 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6	Set the Resolution Limit.7-2Select Runs for Integration7-3Refinement Options.7-6Integration Options7-8Start the Integration7-10g Data7-11Start the Scale Plug-in7-11Set Up the Scale Operation7-11Refine the Parameters.7-13Refine the Error Model7-15Examine the Diagnostic Plots7-17Close the Scale Plug-in7-18
7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Scaling 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 Face In	Set the Resolution Limit.7-2Select Runs for Integration7-3Refinement Options.7-6Integration Options7-8Start the Integration7-10g Data7-11Start the Scale Plug-in7-11Set Up the Scale Operation7-11Refine the Parameters7-13Refine the Error Model7-15Examine the Diagnostic Plots7-17Close the Scale Plug-in7-18Idexing with the Index Crystal Faces Plug-in7-19
7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Scaling 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 Face In 7.3.1	Set the Resolution Limit.7-2Select Runs for Integration7-3Refinement Options.7-6Integration Options7-8Start the Integration7-10g Data7-11Start the Scale Plug-in7-11Set Up the Scale Operation7-11Refine the Parameters7-13Refine the Error Model7-15Examine the Diagnostic Plots7-17Close the Scale Plug-in7-18Idexing with the Index Crystal Faces Plug-in7-19Starting the Index Crystal Faces Plug-in7-19
7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Scaling 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 Face In 7.3.1 7.3.2	Set the Resolution Limit.7-2Select Runs for Integration7-3Refinement Options7-6Integration Options7-8Start the Integration7-10g Data7-11Start the Scale Plug-in7-11Set Up the Scale Operation7-11Refine the Parameters7-13Refine the Error Model7-15Examine the Diagnostic Plots7-17Close the Scale Plug-in7-18Ndexing with the Index Crystal Faces Plug-in7-19The Index Crystal Faces Plug-in7-20
7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Scaling 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 Face In 7.3.1 7.3.2 7.3.3	Set the Resolution Limit.7-2Select Runs for Integration7-3Refinement Options.7-6Integration Options7-8Start the Integration7-10g Data7-11Start the Scale Plug-in7-11Set Up the Scale Operation7-11Refine the Parameters7-13Refine the Error Model7-15Examine the Diagnostic Plots7-17Close the Scale Plug-in7-18Ndexing with the Index Crystal Faces Plug-in7-19The Index Crystal Faces Plug-in7-20Specifying Crystal Faces7-20Specifying Crystal Faces7-22
7.2	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Scaling 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 Face In 7.3.1 7.3.2 7.3.3 7.3.4	Set the Resolution Limit.7-2Select Runs for Integration7-3Refinement Options.7-6Integration Options7-8Start the Integration7-10g Data7-11Start the Scale Plug-in7-11Start the Scale Operation7-11Refine the Parameters7-13Refine the Error Model7-15Examine the Diagnostic Plots7-17Close the Scale Plug-in7-18Mexing with the Index Crystal Faces Plug-in7-19The Index Crystal Faces Plug-in7-20Specifying Crystal Faces7-22Editing the Face List7-24Sea Indices7-24

8	Examiı	ning Data
	8.1	Using the Determine Space Group Plug-in8-18.1.1Start the Determine Space Group Plug-in8-18.1.2Set Up the Determination Parameters.8-28.1.3Examine the Lattice Exceptions8-38.1.4Choose a Space Group8-48.1.5Examine the Reflection Statistics8-58.1.6Check the Unit Cell Contents8-88.1.7Set Up the Output File8-98.1.8Examine Cell Information8-108.1.9Examine Diagnostics8-118.1.10Exit the Space Groups and Statistics Plug-in8-11
	8.2	Determining the Space Group with XPREP
	8.3	Create Simulated Precession Images 8-13
9	Structu	ure Solution and Refinement
	9.1	AUTOSTRUCTURE9-29.1.1Set Up AUTOSTRUCTURE9-29.1.2Automatically Solving and Refining the Structure9-3
	9.2	Solving the Structure with the Solve Structure Plug-in
	9.3	Refining the Structure in the Solve Structure Plug-in
	9.4	Refining the Structure using the Refine Structure Plug-in
10	Using	the Generate Report Plug-in
	10.1	Preparing for Report Generation 10-1
	10.2	Starting the Plug-in 10-2
	10.3	Choosing a Template File 10-2
	10.4	Creating an HTML-Formatted Report for Online or Print Distribution 10-3
	10.5	Creating a Report for Submission to Acta Crystallographica 10-4
	10.6	Adding Additional Information to the Report10-510.6.1Adding Information from a .CIF File.10-510.6.2Adding the Run List.10-510.6.3Adding Additional Information10-6

11	Appen	dices
	11.1	SaintChart Output Reference 11-1
		11.1.1 Run Selector (Top Right Combo Box)
		11.1.2 Twin Component Selector
		11.1.3 Chart Selector
		11.1.4 Default SaintChart Items 11-2
		11.1.5 Non-Default SaintChart Items 11-2
	11.2	Using CELL_NOW
		11.2.1 Running CELL_NOW on a List of Reflections
	11.3	Configuring the Suite
		11.3.1 The bn-config Configuration File
		11.3.2 Configuration File Examples 11-7
		11.3.3 Functionality Groups in the Configuration File 11-8
Index		Index-1

This page intentionally left blank.

1 About this User Manual

1.1 APEX3 Software for Chemical Crystallography

Figure 1.1 — APEX3 software (Integrate Images plug-in shown)

APEX3 is Bruker's comprehensive software suite for single-crystal X-ray diffraction. APEX3, combined with Bruker's X-ray diffractometer systems, provides the tools for complete small-molecule structure determination. The software provides the highest-quality data: from acquisition, collection, integration and scaling, through structure solution and refinement, and ending with publication-ready report generation.

APEX3 redefines user interaction with the crystallographic experiment. The interface guides the user through the complete experiment with minimal user input and maximal graphical feedback. APEX3 lets the user focus on the structure determination at hand and does not require any knowledge of instrument geometry or data collection strategies. The completely-automated structure determination plug-in XPRESSO makes APEX3 easy to use for the novice, but APEX3 has all of the features required by expert crystallographers.

The software features a client/server architecture that provides for remote control of—and access to—the instrumentation.

Additionally, the Integrate Debye Rings plug-in allows powder diffraction pattern integration and export to DIFFRAC.EVA.

1.2 The Ylid Crystal

The compound used in the examples was 2-dimethylsulfuranylidene-1,3-indanedione (abbreviated "ylid"):

 $C_{11}H_{10}O_2S$

More information on the ylid crystal is available in the article "Polymorphism and History of 2-Dimethylsufuranylidene-1,3-indanedione (YLID)", Ilia A. Guzei, Galina A. Bikzhanova, Lara C. Spencer, Tatiana V. Timofeeva, Tiffany L. Kinnibrugh and Charles F. Campana. *Cryst. Growth Des.*, **2008**, 8 (7), pp. 2411–2418, DOI: 10.1021/cg701260p.

Figure 1.2 — Ylid crystal structure

1.3 Terms and Conventions

1.3.1 Typographical Conventions

Table 1.1 shows typographical conventions used to help you quickly locate and identify information in this document.

Table 1.1 —	Typographical conventions
-------------	---------------------------

Convention	Usage
boldface	Software user interface controls (such as icons, menu items, and buttons) to be selected as part of the current procedure.
italics	New terms and words requiring emphasis.
monospace	Information read from or entered into a field or command prompt.
>	Navigation through a hierarchical menu. For example, "Choose Start > Programs > Bruker AXS > APEX3" describes navigating Windows' menus from Start to Programs to Bruker AXS to APEX3.
[square brackets]	Keyboard input.

1.3.2 Equivalent Terms

1.3.2.1 Frame/Image

In 2-dimensional X-ray diffraction, the terms *frame* and *image* refer to the same 2-dimensional view of the diffraction pattern.

1.3.2.2 Greek and Roman Text

This document uses scientific terminology that may be rendered in Greek text. However, this document follows a convention of using Roman text to the greatest extent possible.

Table 1.2 — Greek and Roman Text

Greek	Roman
θ	theta
ω	omega
φ	phi
Х	chi
К	kappa

1.3.3 Notices: Danger, Caution, and Note

This document contains notices that must be observed to ensure personal safety, as well as to protect the product and connected equipment. These notices are highlighted as follows according to the level of danger.

The word "DANGER" alerts you to an immediate or potential hazard that can result in death, severe personal injury, or substantial property damage.

The word "CAUTION" alerts you to a potential practice or condition that could result in minor personal injury or damage to the product or property.

NOTE: The word "NOTE" in bold capital letters draws your attention to particularly important information on the product or handling of the product, or to a particular part of the product documentation.

1.4 Referenced Documentation

The following Table contains a list of documentation referenced by this document. It is necessary to have this additional documentation available as you work with this document. In the documents' part numbers, a variable revision number is given immediately after the part number. Always use the most current revisions available.

All of the documents shown may be found at Bruker's comprehensive support site www.brukersupport.com, or on the Online Documentation CD-ROM that accompanies the shipment.

Part Number	Title
DOC-269-0175XX	SAINT Software Reference Manual
DOC-M86-EXX024	Microscope Focus and Sample Alignment
DOC-M86-EXX184	D8 QUEST and D8 VENTURE Video Microscope Alignment Procedure
DOC-M88-EXX099	License Manager User Manual
DOC-M88-EXX190	DIFFRAC.SUITE Installation Guide

Table 1.3 — Referenced documentation

1.5 X-ray Safety

X-ray equipment produces potentially harmful radiation and can be dangerous to anyone in the equipment's vicinity unless safety precautions are completely understood and implemented. All persons designated to operate or perform maintenance on this instrument must be fully trained on the nature of radiation, X-ray generating equipment, and radiation safety. **All users** of the X-ray equipment may be required to accurately monitor their exposure to X-rays by proper use of X-ray dosimeters.

For safety issues related to operation and maintenance of your particular X-ray generator, diffractometer, and shield enclosure, please refer to the manufacturer's operation manuals or to your Radiation Safety Officer. The user is responsible for compliance with local safety regulations.

1.6 License Considerations

You need a software license to activate your purchased software packages, options, and/or features.

Your Suite program (e.g., APEX3) requires a valid license file to operate. This file, "bn-license.dat", must be present in the root directory of drive C:\ for the software to start properly.

If the license file is not present or has expired, an error window will appear when you try to start your Suite program. This window prompts you to run the License Manager application to obtain a valid license for the Suite.

For more information on licenses and License Manager, refer to DOC-M88-EXX099 License Manager User Manual.

Inquiries about licenses and Bruker licensing may be directed to licenses.BAXS@bruker.com.

1.7 Help and Technical Support

1.7.1 The "What's This?" Help Function

Context-based help is available at any time within the program by simply clicking the "What's This?" help icon:

Figure 1.3 — "What's This?" help icon

SH FI

After clicking the icon, click on any window or field to obtain detailed help in a pop-up window.

The "What's This?" help function can also be used at any time by pressing [Shift]+[F1].

1.7.2 Technical Support from Bruker Service Centers

You are invited to contact Bruker whenever there are problems or questions related to the system. Before you contact Bruker, please:

- Have the system's serial number available;
- Determine the system's software version (if you suspect a software problem);
- · Record any error messages that appear; and
- Determine steps and conditions that recreate the problem (if possible).

Failure to refer instrument servicing to qualified Bruker personnel may result in injury or property damage!

1.7.2.1 Finding Your Local Bruker Service Center

A complete list of all Bruker Service Centers worldwide is available at:

http://www.bruker.com/about-us/offices/offices/bruker-axs.html

1.7.2.2 Brukersupport.com: Bruker's Comprehensive Service Website

Registration with Bruker's comprehensive support website, www.brukersupport.com, provides you with complete and up-to-date information for all of your owned equipment, including:

- All User Manuals, Procedures, FAQs, and other documentation;
- Software updates;
- Remote backup of your equipment settings and configurations; and
- Bruker official training and certification options.

When a new document or software update becomes available, you are immediately alerted via email.

2 APEX3 Software Overview

From a software and operational viewpoint, the APEX3 software controls all operations—from crystal screening to report generation—for a typical crystallography study.

2.1 Server Programs

2.1.1 The Measurement Server

Bruker D8 QUEST and D8 VENTURE instruments are delivered with DIFFRAC.SUITE, a set of software applications used to create and start measurements, and perform other measurement-related tasks on the instrument.

Communication with the instrument takes place via a program called the Measurement Server, which is

part of DIFFRAC.SUITE. The Measurement Server is started via a Desktop icon """, and information about the Measurement Server is shown in the Windows Taskbar's icons.

Figure 2.1 — Software relationships

Before working with APEX3, you must use Measurement Server to select the instrument you want to work with, establish a connection between it and the Measurement Server, and then enable the Measurement Server to get control of the instrument. This is done via the Measurement Server's "Select Instruments" and "Status Window" windows.

Once the Measurement Server is connected to the instrument, you can start the BIS Server, which interprets commands sent by APEX3. Then, in APEX3, you can connect to BIS Server.

2.1.2 BIS Server or BIS

BIS Server is the software layer between the Suite program (e.g., APEX3) and the Measurement Server.

In the case of pre-DAVINCI.DESIGN (i.e., D8 Series I and II) instruments, BIS (also called "BIS Classic") is all that is required; the Measurement Server is not used.

2.2 Client Programs

2.2.1 APEX3 GUI and Plug-ins

APEX3 is the main program that controls experiments and analyzes data. The user works with APEX3 through a variety of software modules, or *plug-ins*, for different aspects of an experiment. The Suite includes a Sample Database that stores relevant data from each step in the experiment.

2.2.2 Online and Offline Operation

The Suite can operate in *online* or *offline* mode.

In online mode:

- DAVINCI.DESIGN instruments use BIS Server to communicate with the instrument for performing experiments. To work in online mode, you must start Measurement Server, BIS Server, and your Suite program (i.e., APEX3).
- Pre-DAVINCI.DESIGN (i.e., D8 Series I or II) instruments use BIS Classic to communicate with the instrument. To work in online mode, you must start BIS. BIS Classic will also start VIDEO when needed.

In offline mode, the Suite program is not connected to the instrument, but is still able to analyze and interpret existing data (plug-ins requiring communication with the instrument will prompt you to connect). To work in offline mode, you only need to start your Suite program.

2.2.3 APEX3Server

APEX3Server is operated on the computer that controls the instrument. It provides functionality for quickly centering a crystal and determining its diffraction quality.

APEX3Server contains two main plug-ins: "Center Crystal" and "Screen Crystal" (see Figure 2.2).

Figure 2.2 — APEX3Server's "Screen Crystal" plug-in

2.3 The Sample Database

The Sample Database is used for the storage of data generated by the Suite. It is designed to transparently handle data from all of the Suite's plug-ins without intervention from the user.

The Sample Database is used internally by the Suite and is not available for user customization or manipulation. It is automatically started when the computer starts up, and it is automatically stopped before the computer shuts down.

2.4 The Main Window

The APEX3 graphical user interface (GUI) has one main window (Figure 2.3).

The main window is divided into five sections:

- Title Bar
- Menu Bar
- Tool Icon Bar
- Task Bar
- Task Display Area

NOTE: Throughout the interface, input fields with pink backgrounds indicate invalid entries. Disabled (i.e., grayed-out) fields indicate that a feature is not available (i.e., not supported or dependent upon the instrument configuration).

2.4.1 The Title Bar

The Title Bar displays the software name and version, user name, sample, license type, and active plug-in. The right-hand edge of the Title Bar also contains the three Windows buttons \Box \Box for minimizing, restoring, and closing the main window.

2.4.2 The Menu Bar

The Menu Bar provides drop-down menus for a variety of file operations, image tools, and help files.

An icon for the currently-active plug-in appears on the left-hand side of the Menu Bar. Clicking on this icon allows you to minimize, restore, resize, close, or move the currently-active window.

2.4.2.1 The Sample Menu

Figure 2.4 — Sample menu

Table 2.1 — Sample menu commands

Sample menu com	nmand	Description
Login		Opens a window for logging into the Sample Database using your username and password.
Logout		Logs out of the Sample Database.
Change Password		Opens a dialog for changing your Sample Database password.
New		Opens a dialog for creating a new sample in the Sample Database.
Open		Opens a previously-saved sample.
Reopen		Reopens a recently-opened sample.
Save		Saves the current sample.
Close		Closes the current sample.
	Restore Archive	Restores an archived sample from a .zip file or CD/DVD.
Archive	Archive Sample	Archives the current sample to a .zip file or CD/DVD.
	Delete Samples	Deletes samples from the Sample Database.
Show Notes		Opens the "Sample Notes" window.
Import		Allows you to import crystal information contained in a .p4p or .spin file into the Sample Database.
Export		Allows you to export crystal data for the current sample as an .xml or .p4p file.
Run Command		Opens a command prompt window.
Exit		Exits the application. This menu item has the same function as the

2.4.2.2 The Instrument Menu

Figure 2.5 — Instrument menu

Instrument	
Connect	
Disconnect	
Show Status Ctrl+Alt+S	
Toggle Shutter	
Update Distance	
Abort	

Table 2.2 — Instrument menu commands

Instrument menu command	Description	
Connect	Opens a connection to BIS Server.	
Disconnect	If connected, disconnects from BIS Server.	
Show Status	Opens a window showing a summary of the current status of the instrument and the program's connection to it.	
Toggle Shutter	Instructs BIS Server to send a shutter open or close command to the instrument. If all interlocks and safety circuits are satisfied, the shutter will open and close.	
Update Distance	For manual detector tracks, allows you to update the detector distance if it disagrees with the value shown in the software.	
Abort	Immediately aborts all pending instrument operations.	

2.4.2.3 The Windows Menu

Figure 2.6 — Windows menu

Table 2.3 — Windows menu command

Windows menu command	Description
Window selection	Displays a list of active windows. Any of these windows may be brought to the front by clicking its title.

2.4.2.4 The Help Menu

Figure 2.7 — Help menu

Help		
About APEX3		
Acknowledgements		

Table 2.4 — Help menu command

Help menu command	Description	
About APEX3	Displays APEX3's version and copyright information.	
Acknowledgements	Displays third-party software contributions to APEX3.	

2.4.3 The Tool Icon Bar

Some icons on the Tool Icon Bar provide shortcuts to the options available through the Menu Bar.

lcon	Description
	Creates a new entry in the Sample Database.
	Opens an existing entry in the Sample Database.
5	Saves the current information to the Sample Database.
NOTE	Shows the "Sample Notes" window
STOP	Stops any instrument activity.
SH FT	"What's this?" Context-sensitive help.

Other icons on the Tool Icon Bar are visible only when a frame is displayed.

Table 2.6 — Tool Icon Bar: displayed frame controls

lcon	Description	
•	Shows the currently-displayed frame's filename. Click the drop-down triangle to choose previously-displayed frames.	
	Opens a frame using a browse dialog.	
	Displays the first frame in a run.	
4	Displays previous frame ([Alt + left arrow]).	
	Sequentially displays frames in reverse as a movie.	
	If displaying frames as a movie, stops the movie.	
\searrow	Sequentially displays frames as a movie.	
	Displays the next frame ([Alt + right arrow]).	
	Displays the last frame in a run.	
	Adjusts the rate of display when viewing frames as a movie.	
~	Displays frames from the next lower-numbered run ([Alt + down arrow]).	
	Displays frames from the next higher-numbered run ([Alt + up arrow]).	
N	Draws a plotting line. The plot appears below the image.	
0	Draws a resolution circle.	
	Selects a region of the frame.	

2.4.4 The Task Bar

The Task Bar gives you access to all of the plug-ins available in the Suite.

NOTE: If the Task Bar is not visible, there is no open sample. Choose Sample > New... or Sample > Open... to open or create a new sample.

Table 2.7 — "Set Up" category

lcon	Name	Description
Ś	Describe Sample	Specify crystal size, color, shape, etc.
	Center Crystal	Crystal centering for manual (and, if applicable, motorized) goniometer heads.
	Screen Crystal	Provides tools for rapid crystal screening using phi and omega scans.
×	XPRESSO	Automatic structure determination.

Table 2.8 — "Evaluate" category

lcon	Name	Description
a po	Determine Unit Cell	Determine unit cell and Bravais lattice type.
Æ.	Transform Unit Cell	Transform a unit cell.
	Compare Unit Cells	Compare unit cells to find twin laws.
	View Reciprocal Lattice	3D visualization of the lattice projected in reciprocal space.
A	View Images	View and analyze diffraction images.

Table 2.9 — "Collect" category

lcon	Name	Description
S.	Calculate Strategy	Calculation and customization of data collection strategies.
	Run Experiment	Sequence monitor and editor for data collection experiments.
	Orient Crystal	Measure diffraction images with the crystal aligned along specified axes.

Table 2.10 — "Reduce Data" category

lcon	Name	Description
a a a a a a a a a a a a a a a a a a a	Integrate Images	Integrate diffraction data.
ring (m)	Index Crystal Faces	Determine Miller indices and distances of single-crystal faces.
	Scale	Scale intensities and perform absorption correction.
ALL.	Integrate Debye Rings	Display and integrate single and multiple frames.
	Unwarp and Convert Images	Convert frames between formats.

Table 2.11 — "Examine Data" category

lcon	Name	Description
	Determine Space Group	Dataset analysis and manipulation.
	Analyze Data	Run XPREP.
S	Synthesize Precession Images	Create precession images based on measured frames.
	View Diffraction Space	Create a 3D view in reciprocal space based on measured frames.
	Find a Reflection	Find a reflection in measured frames.

Table 2.12 — "Find Structure" category

lcon	Name	Description
	AUTOSTRUCTURE	Automatic solution and refinement with minimum user input.
	Solve Structure	Structure Solution.
and the second sec	Refine Structure	A graphical user interface for XL.
	View Molecule	3D visualization of molecules.

Table 2.13 — "Report" category

lcon	Name	Description
	Generate Report	Use Bruker's automatic report generation system.

Right-click in the Task Bar to choose one of two views: Stack Bar or Tree View.

Figure 2.8 — Stack Bar view lacktriangly sample Instrument Windows Hell NOTE Set Up Describe Sample 🖌 Stack Bar Tree View Center Crystal Screen Crystal XPRESSO Evaluate Collect Reduce Data Examine Data Find Structure Report

In Stack Bar view, click one of the Task Bar categories to display only the icons belonging to that category. All other Task Bar icons will be hidden.

In Tree View, categories may be expanded to display their Task Bar icons by clicking the plus or minus sign next to the category name.

2.4.5 The Task Display Area

The Task Display Area (Figure 2.10) is the main area for tasks, user input, and graphical output (APEX3 also produces files as output, such as *.hkl files).

This area displays images and other output from the plug-ins.

NOTE: In APEX3, Analyze Data (i.e., the user interface for XPREP) opens in a new window. All other plug-ins open in APEX3's Task Display Area.

3 Getting Started with APEX3

Before you begin using APEX3, it is necessary to start the program, log in, and create a sample in the Sample Database. All files (e.g., frames, *.p4p files, etc.) will be contained in a directory that you specify when you create the sample.

3.1 User Access

Bruker software allows different user accounts to have different levels of access to the instrument:

- Service
- Security
- Administrator
- User
- Non-user

User access is controlled via the User Manager program.

3.2 Start APEX3

Double-click the APEX3 icon on the Desktop (or choose **Start > All Programs > Bruker AXS > APEX3** if the license is properly installed).

APEX3's main window opens.

3.3 Log In

At the "Login" dialog, enter your user name and password (as shipped by Bruker, the default account is guest with password guest). Click **OK**.

Figure 3.1 —	"Login" dialog
0	0 0

🕸 Login	8 ×
User:	guest
Password:	•••••
	OK Cancel

NOTE: If your setup does not require individual login accounts, you can configure the software to automatically log into a specified account by setting the shortcut's target to e.g., "C:\bn\src\scripts\apex.bat user:guest password:guest".

3.4 Connect to BIS Server (or BIS Classic)

NOTE: This step is optional; plug-ins will connect when needed.

1. To use the software in online mode, choose **Instrument > Connect...**.

The "Instrument Connection" dialog appears.

2. Enter the name (or IP address) of the computer running BIS Server or BIS Classic (the dialog shows the default host; if these are running on the same computer as APEX3, the host name is localhost). Click **Connect**.

Figure 3.2 — "Instrument Connection" dialog

* Instrument Connection	8 ×
Host Name: localhost	
Connec	t Cancel

3.5 Create a New Sample

1. Choose **Sample > New...**

The "New Sample" dialog opens.

Figure 3.3 — "New Sample" dialog

🐐 New Sample	? ×
	Help
Name: ylid	
Group: Users	_
Folder: C:\frames\guest\ylid	
	OK Cancel

- 2. In the "New Sample" dialog, enter the sample name and choose an access group for your sample (if desired). The Suite will automatically create a directory for data storage.
- **NOTE:** You can only use a sample name once per database. If the name is already taken, the program suggests an alternative sample name.
- NOTE: The sample name and sample folder do not need to match. Even though the folder name is automatically filled in by the software, the user can redirect it to any folder on the computer (or network). Multiple projects can point to the same folder, which is useful for trying out multiple data-processing approaches. Be aware, though, that the same "\work" folder is used by all projects—it can be helpful to rename "\work" folders from previous analysis attempts.
 - 3. Click OK.

The Task Bar appears with the "Set Up" category open.

3.6 Describe the Sample with the Describe Sample Plug-in

- In the Task Bar's "Set Up" category, click the **Describe Sample** icon The Describe Sample plug-in opens.
- 2. Fill in the fields.

Figure 3.4 — Describe Sample plug-in (filled in)

Name:	yid			
Compound:	2-dimethylsulfurarylidene-1,3-indanedione]		
Formula:	C11H1002S1]		
Cautal Calary	Appearance Intensity	Primary Color	Secondary Color	_
Crystal Color.		yenow		<u> </u>
Crystal Dimensions:	0.500 × 0.500 × 0.500	[mm]		

Brackets can be used in the "Formula:" field to indicate multiple fragments (e.g., (C7H8) 6. Also, simple abbreviations for organic fragments can be used (e.g., Me, Et, Pr, Bu, Cp, Or Cp*.)

3. Close the Describe Sample plug-in by clicking the 🗙 button on the right-hand side of the Menu Bar.

The data is automatically saved to the Sample Database.

3.7 Shutdown

3.7.1 Shut Down APEX3

- 1. Choose **Sample > Exit**.
- 2. In the "Closing Sample" window, choose whether to save or discard the changes made to the Sample Database.

Figure 3.5 — "Closing Sample" window

🐐 Closin	ng Sample
1	What should happen to your changes to the present sample?
	Save Discard Cancel

NOTE: The "Closing Sample" window appears even if no apparent changes were made to the Sample Database, because the date and time of the last access are held in the Sample Database and differ from the current date and time.

APEX3 closes.

3.7.2 Shut Down BIS Server

Click the button in BIS Server's upper right-hand corner.

BIS Server closes.

3.7.3 Stop the Measurement Server

On the computer controlling the instrument (i.e., the single computer or the Server in a dual-computer

configuration), right-click the Measurement Server icon "it in the Windows Task Bar. Choose Exit.

The Measurement Server stops.

This page intentionally left blank.

4 Crystal Centering and Screening

4.1 Centering the Crystal

To obtain accurate unit cell dimensions and collect high-quality data, it is necessary to position the crystal in the center of the X-ray beam and maintain this position for the entire experiment.

Your video microscope should be aligned so that the VIDEO software's reticle coincides with the goniometer center. If the reticle does not coincide with the goniometer center, you can still center the crystal. A successfully-centered crystal stays in the same place in the microscope's field of view in all orientations.

Also, the centering process can be greatly helped by lighting both the sample and background for maximum contrast.

- **NOTE:** To make adjustments easier the goniometer head's X, Y and Z locks may be loosened (with the thin end of the wrench—the other end of the wrench is used to move the adjustment sleds). Locking after centering needs only a very slight touch; do not overtighten the locks.
- **NOTE:** Centering is often easier if the crystal is rotated to give a good view before the actual centering process is started (e.g., down an edge for a plate). To do this, drive to the initial centering position, loosen the crystal mounting screw (if present), rotate the crystal to a suitable orientation, and then tighten the screw again.

4.1.1 Start the Center Crystal Plug-in

Under the "Set Up" category in the Task Bar, click the Center Crystal icon

The Center Crystal plug-in opens.

4.1.2 Mount the Goniometer Head

- 1. Open the enclosure door(s).
- 2. Carefully remove the goniometer head containing the sample from its case.

Use extreme care when handling the goniometer head to prevent damage to the sample.

- **NOTE:** If you mount the sample yourself, make sure that the crystal is in an arbitrary orientation on the goniometer head (e.g., avoid mounting a needle-shaped crystal parallel to phi).
 - 3. Place the goniometer head onto its base on the phi drive. Line up the appropriate slot on the bottom of the goniometer head with the pin on the mounting base (Figure 4.1).
- **NOTE:** Modern goniometer heads have two slots, but only one fits the goniometer pin. The Z axis adjustment screw will face you in the default center position.

Figure 4.1 — Goniometer head bottom

4. Screw the goniometer head's collar to the base so that the head does not move. Do not overtighten it (finger-tighten only).

Figure 4.2 — Huber goniometer head

4.1.3 Center the Crystal on the Goniometer

NOTE: This procedure is applicable to both FIXED-CHI and KAPPA goniometers.

1. To show the video image, click the **Start Grab** button **>** .

NOTE: On pre-DAVINCI.DESIGN systems, the video will appear in a separate window.

- Choose the desired reticle for centering by clicking the appropriate button (this example uses the crosshair reticle +.
- 3. Click the **Center** button.

The goniometer head drives so that its Y and Z translation axes are positioned perpendicular to the microscope.

Figure 4.3 — Center position, Y- and Z-axis adjustment screws

Figure 4.4 — Uncentered crystal as initially mounted

- 4. Center the crystal in the video microscope reticle by making adjustments to the Y- and Z-axis adjustment screws.
- Figure 4.5 Centered crystal after Y- and Z-axis adjustments

5. Click Spin Phi 90.

Phi rotates so that the X-axis adjustment is facing the front of the diffractometer. Any error in the crystal's position along the X axis will now appear in the microscope.

Figure 4.6 — Center position, X-axis adjustment screw

Figure 4.7 — X-axis error after spinning phi 90°

6. Center the crystal in the video microscope reticle by making adjustments to the X-axis adjustment screw.

Figure 4.8 — Centered crystal after X-axis adjustments

- 7. Click **Spin Phi 180** and check that, after rotating 180°, the crystal appears in the same position in the microscope reticle. If the crystal does not appear in the same position:
 - 7.1. Use the adjustment screw facing you to remove half of the difference shown in the reticle (Figure 4.9 and Figure 4.10).
 - 7.2. Click **Spin Phi 180**, and check that the crystal appears in the same position in the microscope reticle.
 - 7.3. Repeat the preceding two steps until you are satisfied that the crystal remains in the same position in the microscope reticle when rotated by 180°.

Figure 4.9 — Example: error in Y axis

Figure 4.10 — Example: error removed by half

8. Alternately click **Spin Phi 90** and **Spin Phi 180** to verify that the crystal stays in the same place in the microscope reticle through all motions of phi. If the crystal fails to stay in the same position as phi is rotated, make adjustments to the axes by repeatedly removing half the error (always using the adjustment screw facing you) as in step 7.

If the crystal does not remain centered, go back to step 3.

- **NOTE:** It is important to note that, for non-spherical crystals of larger sizes, a perfectly centered crystal may still appear to move somewhat in the reticle if the microscope's focal plane does not pass through the goniometer center.
- **NOTE:** If the crystal consistently fails to appear in the same position when rotated by 180°, the position of the microscope reticle may need adjustment. For more information, refer to DOC-M86-EXX024 Microscope Focus and Sample Alignment Procedure or DOC-M86-EXX184 D8 QUEST and D8 VENTURE Video Microscope Alignment Procedure, as appropriate.

The crystal is now centered on the goniometer.

4.1.3.1 Additional Verification Positions: Left, Right, and Top

In addition to the **Center** position, three other positions are available for verification of the microscope and crystal alignment: **Left**, **Right**, and **Top**.

These additional positions are typically only used for verifying that the microscope reticle is pointing at the goniometer center. If the crystal moves more than 10 microns (i.e., one-half reticle "tick") between positions, the microscope may need alignment; see DOC-M86-EXX184 D8 QUEST and D8 VENTURE Video Microscope Alignment Procedure or DOC-M86-EXX024 Microscope Focus and Sample Alignment Procedure, as appropriate.

1. Click the **Right** button.

The goniometer drives to place the fiber horizontal and to the right.

NOTE: On a KAPPA goniometer, this position has an increased risk of ice formation if a low-temperature device is being used.

Figure 4.11 — Right position

Figure 4.12 — Crystal in right position

2. Click the Left button.

The goniometer drives to place the fiber horizontal and to the left. Note the height of the crystal in the video microscope reticle.

NOTE: On a KAPPA goniometer, this position has an increased risk of ice formation if a low-temperature device is being used.

Figure 4.13 —Left position

Figure 4.14 — Crystal in left position

- 3. Check that the crystal height is the same as the height you noted in step 2.
 - 3.1. If the height is the same, you may be confident that the crystal is in the center of the instrument.
 - 3.2. If the height is not in the same place, adjust to remove half of the difference, click **Right**, and repeat step 2 through step 3.

4.2 Checking Crystal Quality

A number of tools provide information about the current image. These tools, present throughout the Suite, can help determine the diffraction characteristics of a crystal.

4.2.1 Start the Screen Crystal Plug-in

In the Task Bar's "Set Up" category, click the Screen Crystal icon

The Screen Crystal plug-in opens.

4.2.2 Set up the Scan

Figure 4.15 — Screen Crystal menu

-Anode	
Current Anode: Mo	Switch to Cu anode
Preset Positions]
Zero	Current
Phi = 0	Phi + 90
User 1	User 2
User 3	User 4
2Theta: 52	
Omega: 23	
Phi: 0 -	
Dr	ive
Preset Scans	
Preset Scans	360° Phi
Preset Scans Still Narrow (0.5)	360° Phi Wide (2.0)
Preset Scans Still Narrow (0.5)	360° Phi Wide (2.0)
Preset Scans Still Narrow (0.5) Scan Axis Phi	360° Phi Wide (2.0)
Preset Scans Still Narrow (0.5) Scan Axis Phi Scan Range:	360° Phi Wide (2.0)
Preset Scans Still Narrow (0.5) Scan Axis Phi Scan Range: Image Width:	360° Phi Wide (2.0)
Preset Scans Still Narrow (0.5) Scan Axis Phi Scan Range: Image Width: Exposure Time: 10.00	360° Phi Wide (2.0) ○ Omega
Preset Scans Still Narrow (0.5) Scan Axis Phi Scan Range: Image Width: Exposure Time: 10.00 Correlate Dad Correct	360° Phi Wide (2.0) Omega ↓ secs/image Exposures
Preset Scans Still Narrow (0.5) Scan Axis Phi Scan Range: Image Width: Exposure Time: 10.00 Correlate	360° Phi Wide (2.0) Omega ▼ secs/image Exposures
Preset Scans Still Narrow (0.5) Scan Axis Phi Scan Range: Image Width: Exposure Time: 10.00 Correlate Dark Current Correction Existing dark image	360° Phi Wide (2.0) Omega ▼ secs/image Exposures New dark image

- 1. If you have a dual-source system, set the system to collect the scan at the desired wavelength.
- 2. Set the goniometer to the desired position either by using the preset position buttons, adjusting the sliders, or by manually editing the goniometer angle values.
- **NOTE:** The **User** positions may be defined in the bn-config.py file.
 - 3. Click **Drive** to initiate the requested movement.
- **NOTE:** You must click the **Drive** button to move the goniometer to the new position. If the button is gray, the requested position violates the software limits.
 - 4. Set up the scan parameters either by using the preset scan buttons or manually editing the values.
 - 5. Choose whether to use the existing dark current correction or a new one by clicking the appropriate radio button (not applicable for shutterless data collection).
 - 6. Click **Drive + Scan** to start the scan.

4.2.2.1 Collect a 360-degree Phi Scan

1. Click the **360° Phi** button.

A value of 360.00 is displayed in both the "Scan Range:" and "Scan Width:" fields.

- 2. If necessary, enter an exposure time (the default exposure time is usually sufficient).
- 3. To start the scan, click the **Drive+Scan** button.

4.2.2.2 Collect a Still Scan

1. Click the **Still** button.

A value of 0.00 is displayed in both the "Scan Range:" and "Scan Width:" fields.

2. Enter an exposure time.

You can select the units to be either seconds/frame or seconds/degree.

3. To start the scan, click the **Drive+Scan** button.

An example of starting goniometer positions for sample screening is shown in Table 4.1. If the reflections are overlapping, increase the DX distance. If there are reflections that extend out to the edge of the image, increase the 2theta angle to determine how well the crystals diffract (10° intervals work well).

NOTE: If the low-temperature device's nozzle is perpendicular to the goniometer base and chi is near zero for a long period of time, ice may form on the goniometer head. Whenever BIS Server becomes idle (and if the de-icing option is activated), it will automatically drive the crystal to chi = 45° to eliminate icing.

 Table 4.1 —
 Starting goniometer positions

Goniometer	DX (mm)	2theta (°)	Omega (°)	Phi (°)	Chi (°)
FIXED-CHI	60	0	0	0	54.74 (fixed)
KAPPA	60	0	0	0	45

4.2.2.3 Collect a Narrow or Wide Rotation Scan

- 1. Choose the desired rotation axis by clicking either the **Phi** or **Omega** radio button.
- 2. Choose either Narrow or Wide for the rotation angle.

The same values will appear in the editable "Scan Range:" and "Image Width:" fields.

For example, if you want to collect 3° of data at 0.5° intervals, choose **Narrow** and change 0.5 in the "Scan Range" field to 3.0. The "Image Width" field can also be adjusted in the same way.

- 3. Adjust the exposure time as you would for a still image.
- 4. Click the **Drive + Scan** button.

If the **Correlate Exposures** checkbox is activated, the image will be taken in two parts and added together (not available for shutterless data collection, and not recommended for PHOTON 100 detectors in any case). If the **New dark image** radio button is activated, the system will generate a new dark image with a duration equal to the current exposure time.

4.2.3 Use the Resolution Circle Tool

- 1. Click the Resolution Circle tool \bigcirc in the Tool Icon Bar to activate it.
- 2. Click and drag the mouse to draw the resolution circle.

The circle will extend outward from the beam center and display the resolution at the circle edge (the ring is always drawn from the direct beam position).

Figure 4.16 — Drawing a resolution circle

- 3. To hold the position, release the button.
- 4. To deactivate the Resolution Circle tool, click its icon in the Tool Icon Bar.

4.2.4 Use the Line Tool

A quick way to check whether reflections are overlapping is to use the Line Tool.

A chart showing the counts for each peak under the line is displayed at the bottom. The length of the line in pixels and angstroms is also shown.

- 1. Click the Line tool 📏 in the Tool Icon Bar to activate it.
- 2. To draw the line, click and drag the mouse.

When you release the button, the length of the line remains fixed and it can be placed anywhere on the image.

Figure 4.17 — Drawing a line

3. To deactivate the Line tool, click its icon in the Tool Icon Bar.

4.2.5 Plot a Rocking Curve

The Box tool allows the rocking curve determination of a spot. The full-width half-maximum for a peak's rocking curve is a good estimate of the peak's mosaic spread. Looking at a few peaks away from the Lorentz region gives a rough idea of the overall mosaicity.

- 1. Click the Box tool 🛄 in the Tool Icon Bar to activate it.
- 2. Click and drag to draw the box.

If necessary, zoom into the selected area by right-clicking and choosing Zoom+.

3. Draw a box around a single reflection, right-click, and choose **Rocking Curve**.

A graph appears displaying the total counts as a function of the rotation angle.

You typically need around 1.5° of data on either side of a scan to sample several peaks. If the peak begins at and returns to the background level, the full-width half-maximum value will be displayed. If additional scans are available, the slider bar at the bottom of the graph allows the angular range to be increased.

Figure 4.18 — Rocking curve

- 4. To close the "Rocking Curve" window, click the **button**.
- 5. To deactivate the Box tool, click its icon in the Tool Icon Bar.

4.2.6 View Peak Profiles in 3D

- 1. Click the Box tool L in the Tool Icon Bar to activate it.
- To draw the box, hold the left mouse button down and drag the mouse.
 If necessary, zoom into the selected area by right-clicking and choosing **Zoom+**.
- Draw a box around a peak or group of peaks, right-click, and choose **3D-View**.
 A 3D profile of the box region appears.

The profile can be rotated by holding down the left mouse button and dragging the mouse. the display colors can be changed by right-clicking the contrast scale.

Figure 4.19 — 3D View

- 4. To close the "3D View" window, click the **EXE** button.
- 5. To deactivate the Box tool, click its icon in the Tool Icon Bar.

4.2.7 Examples of Poor-Quality Crystals

Figure 4.20 shows a 360° phi scan on what might be a poor-quality crystal. The spot shape is poor, and the spots tend to run together. The obvious bands on the image suggest that the crystal is nearly aligned along an axis; however, spots will always apparently run together in a nearly-aligned crystal mounting. Figure 4.21 is much more convincing proof of a poor-quality crystal.

Figure 4.20 — Possible poor-quality crystal, 360° phi scan

Figure 4.21 shows a 2° phi scan on a poor-quality crystal. The spot shape is poor, and some spots seem split.

Figure 4.21 — Poor-quality crystal, 2° phi scan

Figure 4.22 shows a 2° phi scan on a poor-quality crystal at +90 in phi. The spot shape is poor, and the spots are very close together.

Figure 4.22 — Poor-quality crystal, 2° phi scan, phi = +90°

Figure 4.23 shows a 360° phi scan on a small crystal. The diffraction power of the crystal is poor, but with longer exposure times this is a reasonable candidate for data collection.

Figure 4.23 — Good-quality crystal but weak diffractor

This page intentionally left blank.

5 Using the XPRESSO Plug-in

5.1 About XPRESSO

The XPRESSO plug-in is a fully-automatic structure collection and determination plug-in, operating entirely within APEX3.

The XPRESSO plug-in enables the instrument to automatically carry out **all** steps of the crystal structure analysis—through report generation—without further user intervention.

NOTE: The XPRESSO plug-in is designed to operate on Mo-target instruments with either fixed-chi or kappa goniometers. It should also function on Cu-target instruments, but may require more time to collect data.

5.2 Before Using XPRESSO

Before using the XPRESSO plug-in, it is necessary to:

- 1. Create a new sample in APEX3 (Section 3.5);
- 2. Describe the sample with the Describe plug-in (Section 3.6); and
- 3. Center the crystal on the goniometer (Section 4.1).

5.3 Start the XPRESSO Plug-in

In the Task Bar's "Set Up" category, click the **XPRESSO** icon

The XPRESSO plug-in opens.

The XPRESSO plug-in's main window contains three sections:

- An "information" section on the left that contains four tabs: "Images", "Structure", "Report", and "Output".
- A "parameters" section on the right that contains inputs for image data and the formula, in addition to unit cell information and a progress/score display.
- The Start and Stop buttons.

5.3.1 Information Section

5.3.1.1 "Images" Tab

This tab contains the same image browsing and analysis tools as APEX3's View Images plug-in. If XPRESSO is set to collect new images, the most recently-collected image appears under the "Images" tab.

Figure 5.1 — "Images" tab

5.3.1.2 "Structure" Tab

During XPRESSO's structure solution phase, this tab opens and displays the structure as it is solved and refined. As with other 3-D structure displays within APEX3, you are able to rotate, pan, and zoom using the mouse, as well as view Q peaks.

5.3.1.3 "Report" Tab

After XPRESSO has solved and refined the structure, this tab will display a report in HTML format.

Figure 5.3 — "Report" tab

Сгу	stal	Structu	ıre R	еро	ort foi	ylid	I			 Collect new Use existing Matrix nuns: (2) 	v images g images 24 image files in	2 📦
yellow sphere-like specime sed for the X-ray crystallog	en of C ₁₁ H aphic ana	I ₁₀ O₂S, approxir alysis. The X-ray	mate dimer y intensity	nsions () data we).500 mm x re measure	0.500 mn ed.	n x 0.500 i	nm, was		Data runs: (1	1140 image files	s in 📄
Table 1: Data c	ollect	ion detai	ils for	ylid.						Formula: C11H1	002S	
Axis dx/mm 2θ/° ω/	°φ/°	x/° Width/	[°] Frames	Time/s	s Wavele ngth/Å	Voltage /kV	e Curren /mA	t Temper ature/K	-			
Omega 60.000 -28.00 332.	00.00	54.74 0.50	240	8.00	0.71076	50	30.0	0				
Omega 60.000 -28.00 332.	00 90.00	54.74 0.50	240	8.00	0.71076	50	30.0	0			_	5.90
Omega 60.000 28.00 28.0	0 180.00	54.74 0.50	240	8.00	0.71076	50	30.0	0				9.04
Omega 60.000 28.00 28.0	0 270.00	54.74 0.50	240	8.00	0.71076	50	30.0	0				18 39
Phi 50.000 0.00 0.00	0.00	54.74 1.00	180	1.00	0.71076	50	30.0	0				90.00
total of 1140 frames were	collected.	The total expo	sure time 1	was 2.1	8 hours. Th	e integra	tion of the	data using		B [*]	-	90.00
in orthorhombic unit cell yie which 1745 were independent	ided a tota	aiot /6/6 reflec	ctions to a	maximu	m ⊎ angle (of 25.06*	(U.84 Are 1.37% ₽	solution), of		v [1]		90.00
nd 1723 (98 74%) were are	ater than	2σ(F ²) The fina	4.333, con	stants of	ess = 5958 fa = 5958	/₀, Dint = 1(2) Å b	= 9.03570	A = 1.50%		Volume [Å ³]	9	90.10
8.3914(6) Å. volume = 990	.11(6) Å ³ .	are based upor	n the refine	ement of	f the XYZ-c	entroids	of 9945 re	flections		Mosaicity [°]		0.88
bove 20 σ(I) with 6.321° <	20 < 50.1	2°. The ratio of	minimum t	o maxim	ium appare	nt transm	ission was	0.935. The		Resolution [/	Å1	0.84
alculated minimum and may	cina una terana											
a second of the many difference	unun uan	ismission coemi	icients (bai	sed on c	crystal size)	are 0.86	/0 and 0.3	3670.		Symmetry		
		Ismission coem	icients (ba:	sed on c	crystal size)	are 0.86	/0 and 0.8	3670.		Symmetry	ce Orthorhom	bic P
The final anisotropic full-mat	rix least-sq	quares refineme	ent on F ² w	sed on o vith 129	variables c	onverged	/0 and 0.3	3670. 2.34%, for		Bravais Latti	ce Orthorhom	bic P
The final anisotropic full-mat he observed data and wR2 lifference electron density s	rix least-sq = 6.17% f	quares refineme for all data. The vas 0.148 e·/Å3	icients (bas ent on F ² w goodness and the la	sed on o vith 129 s-of-fit w argest ho	variables c as 0.232. [*] ole was -0.	onverged onverged The large: 285 e-/Å3	/0 and 0.3 I at R1 = 2 st peak in 9 with an F	8670. 2.34%, for the final MS		Bravais Latti	ce Orthorhom	bic P
he final anisotropic full-mat ne observed data and wR2 ifference electron density s eviation of 0.045 e-/Å3. On	rix least-sq = 6.17% f ynthesis w the basis	quares refineme for all data. The vas 0.148 e-/Å ³ of the final mod	icients (bas ent on F ² w e goodness ³ and the la del, the ca	vith 129 s-of-fit w argest ho loculated	variables c vas 0.232. ole was -0. I density wa	onverged The large: 285 e-/Å ³ as 1.384 g	/0 and 0.3 I at R1 = 2 st peak in with an F g/cm ³ and	3670. 2.34%, for the final MS I F(000),		Symmetry Bravais Latti	ce Orthorhom	bic P
The final anisotropic full-mat re observed data and wR2 lifference electron density s leviation of 0.045 e-/Å ³ . On .32 e	rix least-sq = 6.17% f ynthesis w the basis	quares refineme for all data. The vas 0.148 e·/ų of the final mod	icients (bas ent on F ² w goodness and the la del, the ca	sed on o vith 129 s-of-fit w argest ho loulated	crystal size) variables c ras 0.232. ole was -0. I density wa	onverged The large 285 e-/Å ³ as 1.384 g	70 and 0.3 I at R1 = 2 st peak in 3 with an F g/cm ³ and	8670. 2.34%, for the final MS I F(000),		Symmetry Bravais Latti	ce Orthorhom Score	bic P
The final anisotropic full-mat he observed data and wR2 lifference electron density s leviation of 0.045 e-/ų. On 132 e	rix least-sq = 6.17% f ynthesis w the basis	quares refineme for all data. The vas 0.148 e·/Å of the final mod	icients (bas ent on F ² w e goodness ³ and the la del, the ca	sed on c vith 129 s-of-fit w argest ho alculated	crystal size) variables c ras 0.232. ole was -0. I density wa	onverged onverged The large 285 e-/Å as 1.384 g	/0 and 0.1 I at R1 = 2 I st peak in 9 with an F g/cm ³ and	8670. 2.34%, for the final MS I F(000),		Symmetry Bravais Latti I are Clace	Ce Orthorhom Score 0.93	bic P
The final anisotropic full-mat he observed data and wR2 lifference electron density s leviation of 0.045 e-/ų. On 132 e	rix least-sq = 6.17% f ynthesis w the basis	quares refineme for all data. The vas 0.148 e-/ų of the final mod	cients (ba: ent on F ² w goodness and the la del, the ca	sed on c vith 129 s-of-fit w argest ho loulated	variables c vas 0.232. ole was -0. I density wa	onverged The large: 285 e-/Å ³ as 1.384 g	/U and U. at R1 = 2 st peak in with an F g/cm ³ and	3670. 2.34%, for the final MS I F(000),		Symmetry Bravais Latti Laura Class Stage Overall Quality Check	Ce Orthorhom Score 0.93 1.00	bic P
The final anisotropic full-mat he observed data and wR2 lifference electron density s leviation of 0.045 e-/A³. On 132 e.	rix least-sq = 6.17% f ynthesis w the basis	quares refineme for all data. The vas 0.148 e-/Ås of the final mod	cients (ba: ent on F ² w goodness and the la del, the ca	vith 129 s-of-fit w argest ho Iculated	rystal size) variables c vas 0.232. ole was -0. I density wa	onverged The large: 285 e-/Å ³ as 1.384 g	/U and U.i st peak in with an F g/cm ³ and	3670. 2.34%, for the final IMS I F(000),		Stage Overall Quality Check	Ce Orthorhom Score 0.93 1.00 0.90	bic P
The final anisotropic full-mat he observed data and wR2 leviation of 0.045 e-/Å3. On 132 e	rix least-sq = 6.17% f ynthesis w the basis	quares refineme for all data. The vas 0.148 e-/Ås of the final mod	cients (bas ent on F ² w goodness and the la del, the ca	sed on c vith 129 s-of-fit w argest ho alculated	rystal size) variables c vas 0.232. ⁻ ole was -0. I density wa	onverged The large 285 e-/Å ³ as 1.384 g	/0 and 0.1 at R1 = 2 st peak in ⁹ with an F g/cm ³ and	3670. 2.34%, for the final MS I F(000),		Symmetry Bravais Latti Laua Clace Stage Overall Quality Check Data Acquisition Structure Finding	Ce Orthorhom	bic P
The final anisotropic full-mat he observed data and wR2 leviation of 0.045 e-/Å3. On 132 e	rix least-sq = 6.17% f ynthesis w the basis	guares refineme for all data. The vas 0.148 e-/Å3 of the final mod	cients (bas ent on F ² w goodness and the la del, the ca	sed on c vith 129 s-of-fit w argest h alculated	rystal size; variables c as 0.232. ole was -0. I density wa	onverged The large: 285 e-/Å ³ as 1.384 g	/0 and 0.1 I at R1 = 2 st peak in ⁹ with an F g/cm ³ and	3670. 2.34%, for the final MS I F(000),		Symmetry Bravais Latti Laue Clace Stage Overall Quality Check Data Acquisition Structure Finding Report Generatio	Ce Orthorhom	bic P mmm
The final anisotropic full-mat he observed data and wR2 leviation of 0.045 e-/Å3. On 132 e	rix least-sq = 6.17% f ynthesis w the basis	uares refineme for all data. The vas 0.148 e-/As of the final mod	cients (bas ent on F ² w goodness and the la del, the ca	sed on c vith 129 s-of-fit w argest h liculated	rystal size; variables c as 0.232. ole was -0. density wa	are 0.86 onverged The large: 285 e-/A as 1.384 g	/U and U.I I at R1 = 2 I at peak in With an F g/cm ³ and	3670. 2.34%, for the final MS I F(000),		Symetry Bravais Latti Bravais Latti Brave Clace Stage Overall Quality Check Data Acquisition Structure Finding Report Generation	Ce Orthorhom Score 0.93 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	bic P
Table 2 Sample	rix least-sq = 6.17% f ynthesis w the basis	usinission coeffi juares refineme for all data. The as 0.148 e-/Å of the final moo	cients (bai ent on F ² we goodness ³ and the la del, the ca	vith 129 s-of-fit w argest hu alculated	rystal size) variables c vas 0.232. ⁻ ole was -0. density wa	are 0.86 onverged The large 285 e-/A3 as 1.384 g	/0 and 0.1 st R1 = 1 st peak in with an F g/cm ³ and	3670. 2.34%, for the final IMS F(000),		Symmetry Bravais Latti I aue Clase Stage Overall Quality Check Data Acquisition Structure Finding Report Generatio	Ce Orthorhom Score 0.93 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90	bic P mmm
Table 2. Sample	rix least-sq = 6.17% f ynthesis w the basis	uares refineme for all data. The as 0.148 e-/Å of the final moo	cients (bai ent on F ² we goodness ³ and the la del, the ca	sed on c vith 129 s-of-fit w argest hu alculated	rystal size) variables c as 0.232 ole was -0. density wa	are 0.86 onverged The large: 285 e-/A as 1.384 g	/0 and 0.1 st R1 = 2 st peak in with an F g/cm ³ and	3670. 2.34%, for the final IMS I F(000),		Stage Stage Overall Quality Check Data Acquisition Structure Finding Report Generatic	Ce Orthorhom 0.93 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90	bic P mmm
Table 2. Sample Identification code	ix least-sq = 6.17% f ynthesis w the basis	uares refineme for all data. The vas 0.148 e-/As of the final mod	cients (base ent on F ² we goodnesse and the la del, the ca	sed on c vith 129 s-of-fit w argest hu alculated	rystal size) variables c as 0.232 ole was -0. density wa	are 0.86 onverged The large: 285 e-/A: as 1.384 g	/U and U.I st peak in with an F g/cm ³ and	3670. 2.34%, for the final IMS F(000),		Symetry Bravais Latti Bravais Latti Brave Clace Overall Quality Check Data Acquisition Structure Finding Report Generation	Ce Orthorhom 0.93 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90	bic P mmm
The final anisotropic full-mat he observed data and wR2 leviation of 0.045 e-/Å ³ . On 132 e Table 2. Sample Identification code Chemical formula	ix least-sq = 6.1% f ynthesis w the basis	uares refineme for all data. The vas 0.148 e-/Å ³ of the final mod crystal c ylid C ₁₁ H ₁₀ O ₂ S	cients (bai ent on F ² w 2 goodness ³ and the la del, the ca	sed on c vith 129 s-of-fit w argest hu argest hu alculated	rystal size) variables c as 0.232. ole was -0. density wa	are 0.86 onverged The large 285 e-/A3 as 1.384 g	/U and U.I st peak in with an F g/cm ³ and	3670. 2.34%, for the final XMS F(000),		Symmetry Bravais Latti Laune Clace Stage Overall Quality Check Data Acquisition Structure Finding Report Generatio	Ce Orthorhom 0.93 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90	bic P mmm
Table 2. Sample Identification code Chemical formula Formula weight	tix least-sq = 6.17% f ynthesis w the basis	uares refineme or all data. The vas 0.148 e-/Å3 of the final mod crystal c ylid C ₁₁ H ₁₀ O ₂ S 206.25 g/m01 273/0 k	cients (bai ent on F ² we goodness ³ and the la del, the ca	vith 129 s-of-fit w argest hu alculated	rystal size) variables c as 0.232. ole was -0. density wa	are 0.86 onverged The large 285 e-/A3 as 1.384 g	/0 and 0.1 I at R1 = 2 I with an F g/cm ³ and	3670. 2.34%, for the final IMS F(000),		Symmetry Bravais Latti I and Clace	Ce Orthorhom Score 0.93 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.93 0.94 0.95	bic P mmm
The final anisotropic full-mat he observed data and wR2 ifference electron density s Jeviation of 0.045 e-/A ³ . On 432 e Table 2. Sample Identification code Chemical formula Formula weight Temperature Waveloegth	tix least-sq = 6.17% f ynthesis w the basis	crystal c yid crystal c yid crystal c yid C11H1002S 206.25 g/mol 273(2) K 0,71072 Å	cients (bai ent on F ² w goodness ³ and the la del, the ca	vith 129 s-of-fit w argest h alculated	yystai size) variables c as 0.232. ol ewas -0. density wa	are 0.86 onverged The large 285 e-/A as 1.384 g	/0 and 0.1 I at R1 = 2 st peak in 9 with an F g/cm ³ and	3670. 2.34%, for the final IMS IF (000),		Symetry Bravais Latti Laua Clace Overall Quality Check Data Acquisition Structure Finding Report Generation	Ce Orthorhom Score 0.93 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90	bic P mmm
The final anisotropic full-mat he observed data and wR2 ifference electron density s Jeviation of 0.045 e-/A ³ . On 432 e. Table 2. Sample Identification code Chemical formula Formula weight Temperature Wavelength Constal size	tix least-sq = 6.17% f ynthesis w the basis	crystal c yid C11H1c02S 206.25 g/mol 273(2) K 0.71073 Å	cients (par ent on F ² w goodness ³ and the la del, the ca data fc	vith 129 s-of-fit wargest he argest he alculated	yystai size) variables c as 0.232. ole was -0. I density wa	are 0.86 onverged The large 285 e-/A as 1.384 g	/0 and 0.1 I at R1 = 2 St peak in With an F g/cm ³ and	3670. 2.34%, for the final IMS F(000),		Stage Overall Quality Check Data Acquisition Structure Finding Report Generation	Ce Orthorhom Score 0.93 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.90	bic P mmm
Table 2. Sample Identification code Chemical formula Formula weight Temperature Wavelength Crystal size Created batt	ix least-sq = 6.17% f ynthesis w the basis	crystal c ylid crystal c ylid C ₁₁ H ₁₀ O ₂ S 206.25 g/mol 273(2) K 0.71073 Å 0.500 x 0.500	cients (bai ent on F ² w goodness ³ and the la del, the ca data fo	mm	rystal size) variables c as 0.232. ole was -0. density wa	are 0.86 onverged The large 285 e-/A As 1.384 g	/U and U. I at R1 = 2 st peak in ' with an F g/cm ³ and	3670. 2.34%, for the final IMS F(000),		Symetry Bravais Latti Bravais Latti Stage Overall Quality Check Data Acquisition Structure Finding Report Generation	Ce Orthorhom Score 0.93 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.90	bic P mmm
The final anisotropic full-mat he observed data and wR2 deviation of 0.045 e-/A3. On 432 e Table 2. Sample Identification code Chemical formula Formula weight Temperature Wavelength Crystal size Crystal size Crystal size	ix least-sq = 6.17% f ynthesis w the basis	crystal c yuares refineme for all data. The vas 0.148 er/As of the final mod ytid C ₁₁ H ₁₀ O ₂ S 206.25 g/mol 273(2) K 0.71073 Å 0.500 x 0.500 yellow sphere attachashia	cients (bai ent on F ² w goodness ³ and the la del, the ca data fo	mm	rystal size) variables c as 0.232. ole was -0. density wa	are 0.86 onverged The large 285 e-/A: as 1.384 g	/U and U. I at R1 = 2 st peak in " with an F g/cm ³ and	3670. 2.34%, for the final (MS F(000),	•	Symmetry Bravais Latti United Clace	Ce Orthorhom Score 0.93 1.00 0.90	bic P mmm

5.3.1.4 "Output" Tab

This tab continuously displays information about the data collection and solution process in a scrolling list.

Figure 5.4 — "Output" tab

Space group: P2(1)2(1)2(1) write hki file Score from SpaceGroup in DataAcquisition: 0.948 Performing Stanch in DataAcquisition Score from Stanch in DataAcquisition launch XPrep! D:\frames\quest\ylid\work\sh_ylid_0m.hkl Symmety Bill 0000 Vitte hkl file Score from SpaceGroup in DataAcquisition: 0.948 Performing StructureFinding in X2 Score from SpaceGroup in DataAcquisition: 0.948 Performing StructureFinding in X2 Performing StructureFindin	Images \/ Structure \/ Report \/ Output \	r Image Data
<pre>write hit file Score from SpaceGroup in DataAcquisition: 0.948 Performing Branch in DataAcquisition: 1.000 Performing PushParams in DataAcquisition launch XDrep! D:\frames\quest\ylid\work\sh_ylid_0m.hkl D:\frames\quest\ylid\work\sh_ylid_0m.p4p lx: ~misc.task.Spawn object at 0x1814DA30> Interim score from DataAcquisition in X2: 0.890 send the line to quit Q sent! Q sent! Q sent! Q sent! Space group: P2(1)2(1)2(1) write hit file Score from DataAcquisition: 0.948 Performing SpaceGroup in DataAcquisition: 0.948 Performing SpaceGroup in DataAcquisition: 0.948 Performing StructureFinding in X2 Score from SpaceGroup in DataAcquisition: 0.948 Performing StructureFinding in X2 Performing StructureFinding in X2 Performing SpaceGroup in DataAcquisition: 0.948 Performing StructureFinding in X2 Performing StructureFind</pre>	Space group: P2(1)2(1)2(1)	
Score from SpaceGroup in DataAcquisition: 0.948 Performing SpaceGroup in DataAcquisition launch XPrep! D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frame	write hkl file	Collect new images
<pre>Performing Branch in DataAcquisition : 0.000 Performing PushParams in DataAcquisition : 0.000 Performing PushParams in DataAcquisition launch XPrep! D:\frames\quest\ylid\work\sh_ylid_0m.p4p lx: <pre> cmisc.task.Spawn object at 0x1814DA90> Interim score from DataAcquisition in X2: 0.890 go sent! write hkl file launch XPrep! D:\frames\quest\ylid\work\sh_ylid_0m.p4p lx: <pre> cmisc.task.Spawn object at 0x0C98D970> send the line to quit Q sent! Space group: P2(1)2(1)2(1) write hkl file Score from Branch in DataAcquisition: 0.948 Performing Branch in DataAcquisition: 0.948 Performing StructureFinding in X2: Q sent! D:\frames\quest\ylid\work\sh_ylid_0m.p4p lx: </pre></pre></pre>	Score from SpaceGroup in DataAcquisition: 0.948	Use existing images
Score from Branch in DataAcquisition: 1.000 Performing SpaceGroup in DataAcquisition launch XPrep! D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.p4p lk: <misc.task.spawn 0x1814da90="" at="" object=""> Interim score from DataAcquisition in X2: 0.890 send the line to quit Q sent! Pitrames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.p4p lk: <misc.task.spawn 0x0c98d9f0="" at="" object=""> send the line to quit Q sent! Score from Branch in DataAcquisition: 0.948 Performing StructureFinding in X2 Performing StructureFinding lawork\sh_ylid_Om.p4p lk: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent! </misc.task.spawn> send the line to quit Q sent!</misc.task.spawn></misc.task.spawn>	Performing Branch in DataAcquisition	
<pre>Performing PushParams in DataAcquisition Performing SpaceEcoup in DataAcquisition launch XPrep! D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl Score from DataAcquisition: 0.948 Performing Branch in DataAcquisition: 0.948 Performing SucctureFinding in X2: 0.930 Score from DataAcquisition: 1.000 Score from DataAcquisition: 0.948 Performing SucctureFinding in X2: 0.930 Score from DataAcquisition: 1.000 Score from S</pre>	Score from Branch in DataAcquisition: 1.000	Matrix runs: (24 image files in 2
<pre>Performing SpaceScoup in DataAcquisition launch XPrep! D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.p4p lx: <pre> cmisc.task.Spawn object at 0x1814DA90> Interim score from DataAcquisition in X2: 0.890 g sent! write hkl file launch XPrep! D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.hkl Score from SpaceScoup in DataAcquisition: 0.948 Performing StructureFinding in X2 Performing SpaceScoup in StructureFinding launch XPrep! D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid</pre></pre>	Performing PushParams in DataAcquisition	
<pre>launch XPrep! D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.p4p lx: cmisc.task.Spawn object at 0x1814DA90> Interim score from DataAcquisition in X2: 0.890 send the line to quit Q sent! Q sent! Q sent! D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.p4p lx: cmisc.task.Spawn object at 0x0C98D9F0> send the line to quit Q sent! D:\frames\guest\ylid\work\sh_ylid_Om.p4p lx: Case from Branch in DataAcquisition: 0.948 Performing StructureFinding in X2 Performing StructureFinding launch XPrep! D:\frames\quest\ylid\work\sh_ylid_Om.hkl D:\frames\quest\ylid\work\sh_ylid_Om.p4p lx: cmisc.task.Spawn object at 0x1814DBB0> send the line to quit Q sent! D:\frames\quest\ylid\work\sh_ylid_Om.p4p lx: cmisc.task.Spawn object at 0x1814DB0> send the line to quit Q sent! D:\frames\quest\ylid\work\sh_ylid_Om.p4p lx: cmisc.task.Spawn object at 0x1814DB0> send the line to quit Q sent! D:\frames\quest\ylid\work\sh_ylid_Om.p4p lx: cmisc.task.Spawn object at 0x1814DB0> send the line to quit Q sent! D:\frames\quest\ylid\work\sh_ylid_Om.p4p lx: cmisc.</pre>	Performing SpaceGroup in DataAcquisition	Data nuns: (1140 image files in
D:\frames\guest\ylid\work\sh_ylid_0m.hk1 D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <pre> cmisc.tssk.Spawn object at 0x1814DA90> Interim score from DataAcquisition in X2: 0.890 send the line to guit Q sent! write hk1 file D:\frames\guest\ylid\work\sh_ylid_0m.hk1 D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <pre> cmisc.tssk.Spawn object at 0x0C98D9F0> send the line to guit Q sent! Score from SpaceGroup in DataAcquisition: 0.948 Performing StructureFinding in X2 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hk1 D:\frames\guest\ylid\work\sh_ylid\work\sh_ylid\work\sh_ylid\work\sh_ylid\work\sh_ylid\work\sh_ylid\work\sh_ylid\work\s</pre></pre>	launch XPrep!	
D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <pre> cmisc.task.Spawn object at 0x1814DA90> Interim score from DataAcquisition in X2: 0.890 send the line to quit Q sent! clA 18.39 c [] 90.00 -B [] 90.00 -B</pre>	D:\frames\guest\ylid\work\sh_ylid_Om.hkl	Formula: C11H10O2S
<pre>lx: <misc.task.spawn 0x1814da90="" at="" object=""> Interim score from DataAcquisition in X2: 0.890 send the line to quit Q sent! write hkl file launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hk1 D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x0c98d9f0="" at="" object=""> send the line to quit Q sent! Space group: P2(1)2(1)2(1) write hkl file Score from Branch in DataAcquisition: 0.948 Performing Branch in DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing StructureFinding in X2 Performing SpaceEroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hk1 D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814db80="" at="" object=""> send the line to quit Q sent! </misc.task.spawn></misc.task.spawn></misc.task.spawn></pre>	D:\frames\guest\ylid\work\sh_ylid_0m.p4p	
<pre><misc.task.spawn 0x1814da90="" at="" object=""> Interim score from DataAcquisition in X2: 0.890 send the line to quit Q sent! Vite hkl file Content XPrep! Conte</misc.task.spawn></pre>	lx:	
<pre>cmisc.tsk.Spawn object at 0x1814DA90> Interim score from DataAcquisition in X2: 0.890 send the line to quit Q sent! write hkl file launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x0c98d9f0="" at="" object=""> send the line to quit Q sent! Score from BataAcquisition: 0.948 Performing StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\gu</misc.task.spawn></pre>		Unit Cell
Interim score from DataAcquisition in X2: 0.890 send the line to quit Q sent: launch XPrep! D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.p4p lx: <pre></pre>	<misc.task.spawn 0x1814da90="" at="" object=""></misc.task.spawn>	a [Å] 5.96
<pre>send the line to quit Q sent! write hkl file launch XPrep! D:\frames\quest\ylid\work\sh_ylid_0m.hkl D:\frames\quest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x0c98d9f0="" at="" object=""> send the line to quit Q sent! Space group: P2(1)2(1)2(1) write hkl file Score from Branch in DataAcquisition: 0.948 Performing Branch in DataAcquisition: 1.000 Score from DataAcquisition in X2: 0.903 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\quest\ylid\work\sh_ylid_0m.hkl D:\frames\quest\ylid\work\sh_ylid_0m.hkl D:\frames\quest\ylid\work\sh_ylid_0m.hkl D:\frames\quest\ylid\work\sh_ylid_0m.hkl D:\frames\quest\ylid\work\sh_ylid_0m.hkl D:\frames\quest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent!</misc.task.spawn></misc.task.spawn></pre>	Interim score from DataAcquisition in X2: 0.890	
Q sent! Image: Constraint of the sent of th	send the line to quit	
<pre>vrite hkl file launch XPrep! D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.p4p lx: cmisc.task.Spawn object at 0x0C98D9F0> send the line to quit Q sent! Score from SpaceGroup in DataAcquisition: 0.948 Performing Branch in DataAcquisition: 1.000 Score from DataAcquisition 1.000 Score from DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.hkl D:\frames\guest\ylid\work\sh_ylid_Om.p4p lx: cmisc.task.Spawn object at 0x1814DBB0> send the line to quit Q sent! cmisc.task.Spawn object at 0x1814DB0> send the line to quit Q sent! cmisc.task.Spawn object at 0x1814DB0> send the line to quit Q sent! cmisc.task.Spawn object at 0x1814DB0 sent the to quit Q sent! cmisc.task.Spawn object at 0x1814DB0 sent the to quit Q sent ! cmisc.task.Spawn object at 0x1814DB0 sent the to quit Q sent ! cmisc.task.Spawn object at 0x1814</pre>	Q sent!	a [1] 90.00
<pre>launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lk: cmisc.task.Spawn object at 0x0C98D9F0> send the line to quit Q sent! Space group: P2(1)2(1)2(1) write hkl file Score from Branch in DataAcquisition: 0.948 Derforming StructureFinding in X2 Derforming SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lk:</pre>	write hkl file	0 12 00.00
<pre>Vil 30000 Volume[A] 99010 Volume[A] 99010 Volume[A] 99010 Volume[A] 99010 Volume[A] 99010 Nosaicity[] 0.88 Resolution[A] 0.84 Symmetry ix: cmisc.task.Spawn object at 0x0C98D9F0> send the line to quit Q sent! Score from SpaceGroup in DataAcquisition: 0.948 Performing Branch in DataAcquisition: 1.000 Score from DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.pk1 D:\frames\gu</pre>	launch XPrep!	<u> </u>
D:\frames\guest\ylid\work\sh_ylid_0m.hk1 D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: cmisc.task.Spawn object at 0x0C98D9F0> send the line to quit Q sent! Space group: P2(1)2(1)2(1) write hk1 file Score from SpaceGroup in DataAcquisition: 0.948 Performing Branch in DataAcquisition: 1.000 Score from DataAcquisition: 1.000 Structure Finding 0.90 Report Generation 1.00 Report Generation 1.00 Report Generation 1.00 Report Generation 1.00 Structure Finding 0.90 Report Generation 1.00 Structure Finding 0.90 Structure Finding 0.90 Report Generation 1.00 Structure Finding 0.90 Structure Finding 0.90 Structure Finding 0.90 St		Y[] 90.00
<pre>Mosaicity[] 0.88 Mosaicity[] 0.88 Resolution [A] 0.84 Mosaicity[] 0.88 Resolution [A] 0.84 Mosaicity[] 0.88 Resolution [A] 0.84 Symmetry end the line to quit g sent! Space group: P2(1)2(1)2(1) write hk1 file Score from SpaceGroup in DataAcquisition: 0.948 Derforming Branch in DataAcquisition: 1.000 Score from DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding Launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p Lx: </pre>	D:\frames\guest\vlid\work\sh vlid 0m.hkl	····· Volume [A ³] 990.10
D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: Cmisc.task.Spawn object at 0x0C98D9F0> send the line to quit 2 sent! Space group: P2(1)2(1)2(1) write hkl file Score from SpaceGroup in DataAcquisition: 0.948 Derforming Branch in DataAcquisition: 1.000 Score from DataAcquisition in X2: 0.903 Derforming StructureFinding in X2 Derforming SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: Cmisc.task.Spawn object at 0x1814DBB0> send the line to quit 2 sent!		Mosaicity [*] 0.88
<pre>1x: <misc.task.spawn 0x0c98d9f0="" at="" object=""> send the line to quit Q sent! Space group: P2(1)2(1)2(1) write hkl file Score from SpaceGroup in DataAcquisition: 0.948 Performing Branch in DataAcquisition: 1.000 Score from DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent! </misc.task.spawn></misc.task.spawn></pre>	D:\frames\guest\vlid\work\sh vlid 0m.p4p	Resolution [Å] 0.84
<pre><misc.task.spawn 0x0c98d9f0="" at="" object=""> send the line to quit Q sent! Space group: P2(1)2(1)2(1) write hkl file Score from SpaceGroup in DataAcquisition: 0.948 Performing Branch in DataAcquisition: 1.000 Score from DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: </misc.task.spawn></pre>	1x:	Symmetry
<pre><misc.task.spawn 0x0c98d9f0="" at="" object=""> send the line to quit Q sent! Space group: P2(1)2(1)2(1) write hkl file Score from SpaceGroup in DataAcquisition: 0.948 Performing Branch in DataAcquisition: 1.000 Score from DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\quest\ylid\work\sh_ylid_0m.hkl D:\frames\quest\ylid\work\sh_ylid_0m.p4p lx: </misc.task.spawn></pre>		Bravais Lattice Orthorhombic P
<pre>send the line to quit Q sent! Space group: P2(1)2(1)2(1) write hkl file Score from SpaceGroup in DataAcquisition: 0.948 Performing Branch in DataAcquisition: 1.000 Score from DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: </pre>	<misc.task_spawn_object_at_0x0c98d9f0></misc.task_spawn_object_at_0x0c98d9f0>	I sue Clace mmm
<pre>Q sent! Space group: P2(1)2(1)2(1) write hkl file Score from SpaceGroup in DataAcquisition: 0.948 Performing Branch in DataAcquisition: Score from Branch in DataAcquisition: 1.000 Score from DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent!</misc.task.spawn></pre>	send the line to guit	
<pre>State group: P2(1)2(1)2(1)() write hkl file Score from SpaceGroup in DataAcquisition: 0.948 Performing Branch in DataAcquisition Score from Branch in DataAcquisition: 1.000 Score from DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent!</misc.task.spawn></pre>	0 sent!	
Stage Score write hkl file 0.93 Score from SpaceGroup in DataAcquisition: 0.948 Overall Performing Branch in DataAcquisition: 1.000 Score from DataAcquisition in X2: 0.903 Score from DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p	Space group: B2(1)2(1)2(1)	
<pre>% list in list in the interval interval in the interval interv</pre>	write bbl file	Stage Score
Score from Branch in DataAcquisition 0.900 Score from Branch in DataAcquisition: 1.000 Performing SpaceGroup in StructureFinding Report Generation launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl Image: SpaceGroup in StructureFinding D:\frames\guest\ylid\work\sh_ylid_0m.p4p Image: SpaceGroup in StructureFinding Image: SpaceGroup in StructureFinding lx: Image: SpaceGroup in StructureFinding Image: SpaceGroup in StructureFinding send the line to quit SpaceGroup in StructureFinding Image: SpaceGroup in StructureFinding Image: SpaceGroup in StructureFinding generative: Image: SpaceGroup in StructureFinding Image: SpaceGroup in StructureFinding send the l	Score from SpaceGroup in Dataloguisition: 0.948	Overall 0.93
<pre>Data Acquisition In DataAcquisition: 1.000 Score from DataAcquisition: 1.000 Score from DataAcquisition: 1.000 Score from DataAcquisition: 1.000 Performing SpaceGroup in X2: 0.903 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent! </misc.task.spawn></pre>	Derforming Propek in Dataloguisition	Quality Check 1.00
Score from DataAcquisition in X2: 0.903 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hk1 D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent!</misc.task.spawn>	Seere from Pranch in DataAcquisition: 1,000	Data Acquisition 0.90
<pre>Store From Datackquistion in X2: 0.503 Performing StructureFinding in X2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to guit Q sent! </misc.task.spawn></pre>	Score from Branch in DataAcquisition: 1.000	Structure Finding 0.90
<pre>Performing StructureFinding in %2 Performing SpaceGroup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <maintend <="" for="" line="" pre="" q="" quit="" sent!="" the="" to=""></maintend></pre>	Score from DataAcquisition in X2: 0.903	Report Generation 1.00
<pre>Performing SpaceFoup in StructureFinding launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent! </misc.task.spawn></pre>	Performing StructureFinding in X2	
<pre>launch XPrep! D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent! </misc.task.spawn></pre>	Performing SpaceGroup in StructureFinding	
D:\frames\guest\ylid\work\sh_ylid_0m.hkl D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent!</misc.task.spawn>	launch XPrep!	
D:\frames\guest\ylid\work\sh_ylid_0m.p4p lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent!</misc.task.spawn>	D:\frames\guest\ylid\work\sh_ylid_Om.hkl	
<pre>lx: <misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent! </misc.task.spawn></pre>	D:\frames\guest\ylid\work\sh_ylid_0m.p4p	
<misc.task.spawn 0x1814dbb0="" at="" object=""> send the line to quit Q sent!</misc.task.spawn>	lx:	
<pre>send the line to quit Q sent! </pre>	<misc.task.spawn 0x1814dbb0="" at="" object=""></misc.task.spawn>	
Q sent!	send the line to quit	
	Q sent!	
launch XPrep!	launch XPrep!	

5.3.2 Parameters Section

5.3.2.1 "Image Data" Area

The "Image Data" area allows you to choose where XPRESSO will get its images: from data collection on an instrument, or from images that have already been collected.

Figure 5.5 — "Image Data" area

ge Data
Collect new images
Use existing images
Matrix runs: (No images) 📦
Data runs: (No images) 📦

5.3.2.2 "Formula" Area

The sample's chemical formula (entered in the Describe plug-in) appears in this field.

If you want to run XPRESSO again with a different formula, simply enter the new formula and click **Start**. However, you do not need to re-collect data—be sure to choose the **Use existing images** option.

Figure 5.6 — "Formula" area

Formula: C11H10O2S

5.3.2.3 Unit Cell Parameters

This window contains information about the unit cell found by XPRESSO. It continuously updates as better data is obtained.

When the process has been completed, the final unit cell parameters, mosaicity, space group, and R1 values will be updated.

Figure 5.7 — Unit cell parameters

Unit Cell		
a [Á]	5.96	
b [Å]	9.04	
c[Á]	18.39	
α [°]	90.00	***
β[°]	90.00	
····γ [°]	90.00	
Volume [Å3]	990.10	
Mosaicity [°]	0.88	
Resolution [Å]	0.84	
Symmetry		
Bravais Lattice	Orthorhombic P	⊢
I sua Clase	mmm	_ <u> </u>

5.3.2.4 Progress Display

As the analysis proceeds, each step in the process will be given a quality score (with 1.00 being perfect). In addition, the percent completion, elapsed time and remaining time will be updated.

When the process has been completed, the final scores for each step in the structure determination process will be updated.

Figure 5.8 — Progress display

Stage	Score	
Overall Quality Check Data Acquisition Structure Finding Report Generation	(0.94) 1.00 (0.89) pending pending	

5.4 Set XPRESSO's Options

5.4.1 Choose New or Existing Images

For normal operation, the XPRESSO plug-in will collect new images.

However, there is an option to execute the structure determination portion of the XPRESSO plug-in using existing images. This option may be used to view the crystal structure analysis steps, or to repeat the analysis with a different chemical formula.

1. In the "Image Data" area of the XPRESSO plug-in, choose either **Collect new images** or **Use existing images**.

NOTE: Regardless of the name of the specific sample, the acquired images from the XPRESSO plug-in are always named "matrix_0n_00xx.sfrm" (for preliminary unit cell determination images) and "scan_0n_0xxx.sfrm" (for data collection images).

2. If you chose **Use existing images**, Click the "Matrix runs:" and "Data runs:" browse

buttons *buttons* to open "Select Runs" windows.

Figure 5.9 — Data runs selected in "Select Runs" window

Look in: C:\frames\guest\ylid YLIDMO_04_0729.sfm My Computer work YLIDMO_04_0729.sfm BRUKER Precession YLIDMO_04_0727.sfm m2frm.tmp YLIDMO_04_0726.sfm YLIDMO_04_0726.sfm YLIDMO_02_##### (1 - 351) YLIDMO_03 ##### (1 - 429)
My Computer work YLIDMO_04_0729.sfm BRUKER YLIDMO_04_0728.sfm YLIDMO_01 ##### (1 - 426) fmn2frm.tmp YLIDMO_04_0726.sfm YLIDMO_02 ##### (1 - 351)
report YLIDMO_04_0725.sfm YLIDMO_04_0724.sfm nac.p4p YLIDMO_04_0724.sfm matrix_01_##### (1 - 30) reciprocal YLIDMO_04_0723.sfm matrix_02_##### (1 - 30) YLIDMO_04_0739.sfm YLIDMO_04_0722.sfm matrix_02_##### (1 - 30) YLIDMO_04_0738.sfm YLIDMO_04_0720.sfm matrix_03_##### (1 - 30) YLIDMO_04_0737.sfm YLIDMO_04_0720.sfm matrix_03_##### (1 - 30) YLIDMO_04_0736.sfm YLIDMO_04_0719.sfm matrix_03_##### (1 - 30) YLIDMO_04_0736.sfm YLIDMO_04_0719.sfm matrix_03_##### (1 - 30) YLIDMO_04_0736.sfm YLIDMO_04_0719.sfm matrix_03_##### (1 - 30) YLIDMO_04_0733.sfm YLIDMO_04_0717.sfm matrix_03_##### (1 - 30) YLIDMO_04_0733.sfm YLIDMO_04_0717.sfm matrix_03_##### (1 - 30) YLIDMO_04_0733.sfm YLIDMO_04_0715.sfm matrix_03_##### (1 - 30) YLIDMO_04_0733.sfm YLIDMO_04_0715.sfm matrix_03_###### YLIDMO_04_0731.sfm YLIDMO_04_0713.sfm matrix_04_0713.sfm YLIDMO_04_0730.sfm YLIDMO_04_0713.sfm matrix_04_0713.sfm YLIDMO_04_0730.sfm YLIDMO_04_0713.sfm matrix_04_0713.sfm YLIDMO_04_0730.sfm YLIDMO_04_07
Directory: Choose
Files of type: Directories

5.4.2 Set or Change the Formula

If necessary, enter the desired formula in the "Formula:" field.

If you want to run XPRESSO again with a different formula, simply enter the new formula and click **Start**. However, you do not need to re-collect data—be sure to choose the **Use existing images** option.

5.5 Start Data Collection and/or Structure Solution

Click Start to begin execution of the XPRESSO plug-in.

As the analysis proceeds, each step in the process will be given a quality score (with 1.00 being perfect). In addition, the percent completion, elapsed time and remaining time will be updated.

Figure 5.10 — Progress display

Stage	Score
Overall Quality Check Data Acquisition Structure Finding Report Generation	(0.94) 1.00 (0.89) pending pending
	5 <mark>2</mark> %
10-01-02b passed	

When the process has been completed, the final scores for each step in the structure determination process will be updated.

5.5.1 XPRESSO's Data Collection and/or Structure Solution Process

The XPRESSO plug-in is completely automated, from the time the **Start** button is clicked through report generation. User intervention is not permitted. A **Stop** button is provided for the user to completely terminate the execution of the XPRESSO plug-in.

Once **Start** has been clicked, XPRESSO will acquire a set of preliminary images (named "matrix_On_00xx.sfrm") using a standard set of conditions optimized for your instrument configuration. These images are then used to determine the preliminary unit cell parameters and orientation matrix, and to evaluate the crystal quality.

Based on these preliminary scans, the plug-in optimizes the data collection parameters, taking into account such factors as crystal diffracting power and mosaicity, and begins collecting the actual dataset images (named "scan_0n_0xxx.sfrm"). The plug-in also provides an initial estimate of the time required to collect the complete dataset (assuming triclinic symmetry). All datasets are collected to a resolution of 0.84 Å (IUCr specifications).

After the structure has been solved and refined, the XPRESSO plug-in will automatically generate a report in HTML format.

5.6 Close the XPRESSO Plug-in

Click the **Close** X button in the Menu Bar (not in the Title Bar).

The plug-in closes.

5.7 Using XPRESSO in Conjunction with APEX3

You may use APEX3's other plug-ins to display the structure, edit the report files, or renumber atoms.

You also have the option of repeating the entire analysis in a conventional, stepwise manner beginning with the data collection images (i.e., "scan_0n_0xxx.sfrm"). This option may be required if the XPRESSO plug-in fails to solve the structure due to an incorrect formula or twinning.

6 Data Collection

In the data collection example that follows, we will use an ylid crystal with the sample name <code>ylid</code> (entered in Section 3.5).

6.1 Determining the Unit Cell

Unit cell determination is performed in several steps:

- 1. Data collection
- 2. Harvesting of reflections from collected frames
- 3. Indexing of harvested reflections
- 4. Bravais lattice type determination
- 5. Refinement

These steps are integrated in the Determine Unit Cell plug-in, which also contains a one-click solution for fully-automated unit cell determination.

The upper right-hand corner of the Determine Unit Cell plug-in contains two sections:

- Automatic Mode: for fully-automated unit cell determination (Section 6.1.2); and
- Manual Mode: for unit cell determination with user-defined parameters (Section 6.1.3).

Figure 6.1 — Determine Unit Cell plug-in (initial view)

-Automatic M	ode	-Manual Mode
Start at:	Collect Data	Collect Data
Stop after:	Search 💌	Harvest Spots
	Run	Index
		Bravais
		Refine
		Search

Unit cells:

Edit
Delete
Delete All

Reflections:

Edit
Delete
Delete All

Expected resolution:

	Exposure time [s/°]	Resolution [Å]	_
1	5.0	0.74	
2	20.0	0.69	
3	60.0	0.65	
4	120.0	0.63	
5	0.003	0.58	

Crystal Mosaicity [°]: 0.60

6.1.1 Start the Determine Unit Cell Plug-in

In the Task Bar's "Evaluate" category, click the Determine Unit Cell icon

The Determine Unit Cell plug-in opens.

6.1.2 Determine the Unit Cell in Automatic Mode

- 1. From the **Start At:** pull-down menu, select the step at which you want to begin automatic unit cell determination (useful if you want to find a unit cell from frames that have already been collected).
- 2. From the **Stop After:** pull-down menu, select the step at which you want to stop automatic unit cell determination.
- 3. Click Run.

Automatic data collection begins, and collected frames appear in the Information Display Area (you can abort the determination procedure at any time by clicking **Abort**.). The area containing the Automatic and Manual mode options changes to a list showing the system's progress through the steps of unit cell determination.

Figure 6.2 — Automatic Mode progress list

Task	Comment
 ✓ Collect Data ✓ Monitor Data Collection ✓ Harvest Spots ✓ Index ✓ Choose Solution □ Refine □ Bravais □ Refine □ Search 	Data collection started. 12 images collected. Harvested 17 reflections from 12 images. Selected 17 reflections for indexing.
L	Abort Close

When automatic unit cell determination is complete, the progress list will show a check mark and comments for each completed step (Figure 6.3).

Figure 6.3 — Automatic Mode progress list (complete)

Task	Comment
Harvest Spots Index Choose Solution Refine Bravais Refine	Harvested 63 reflections from 90 images. Selected 59 reflections for indexing. Indexed 56 out of 59 reflections. 5.96 9.03 18.36 90.01 89.99 89.97 Found Bravais lattice type Orthorhombic P. 5.95 9.03 18.36 90.00 90.00 90.00
	Abort Close

4. Click the **Close** button to close the progress list and return to the main Determine Unit Cell window.

The window's right-hand side displays the unit cell parameters, along with options to edit or delete the unit cell and reflection list if you wish to perform additional operations in Manual Mode.

If desired, you can set up your own runs for the Determine Unit Cell plug-in by using:

- For D8 Classic instruments: BCP's Single Crystal function (in the "Instrument" category) or by editing the bn-config.py configuration file.
- For DAVINCI.DESIGN instruments: DIFFRAC.DETECTOR's "Matrix Runs" section.

6.1.3 Manual Mode

The Determine Unit Cell plug-in's Manual Mode functions allow you a great degree of control over unit cell determination. Manual Mode consists of five sections, each with its own menu, corresponding to the five stages of unit cell determination:

- 1. Collect Data
- 2. Harvest Spots
- 3. Index
- 4. Bravais
- 5. Refine

6.1.3.1 Collect Data

Figure 6.4 — Collect data menu

Image Location:	C:\frames\guest\ylid
Image Base Name:	matrix
First Run:	1
Distance [mm]:	40.00
Exposure Time:	10.00 🚖 sec/image 💌
Image Width [deg]:	0.50
Detector Format: Correlate Frames:	1024x1024 V
Anode:	Mo

Table 6.1 — Collect Data menu items

Menu Item	Function		
Image Location:	Location where collected frames will be saved.		
Image Base Name:	Text string that is appended to each frame's filename and is used to identify frames by their filenames.		
First Run:	Choose which run number will be the first run; useful for adding runs without overwriting previous ones.		
Distance [mm]:	Detector distance.		
Exposure Time:	Duration, in seconds, of each frame.		
Image width [deg]:	Distance, in degrees, that the scan axis travels over the course of a single exposure.		
Detector Format:	Resolution of the frames collected by the detector.		
Correlate Frames:	Two frames are taken (each with half the duration of the overall Exposure Time), to correct for spurious events appearing on individual frames (not available in shutterless mode).		
Anode:	For dual-source systems, choose the wavelength for unit cell determination.		
[left arrow]	Go to the previous step in the unit cell determination process.		
[right arrow]	Go to the next step in the unit cell determination process.		
Finish	Finish the sequence of steps in the unit cell determination process, beginning with the current step. Perform any tasks that are necessary.		
Collect	Proceed with data collection according to the options set in the preceding menu items.		
Cancel	Leave Manual Mode and return to the initial Unit Cell Determination page, performing no operations and ignoring any changes made to menu items.		

6.1.3.2 Harvest Spots

Figure 6.5 — Harvest Spots menu

First Image: Number of Runs:	C:\frames\guest\ylid\matrix_01_0001.sfm	
Go to Image:	C: Vrames vguest vyild vnathx_01_0001.stm	\
Min. I/sigma(l):	More Spots	Fewer Spots
	From [Å] To [Å]	Add
		Edit
		Delete
Excluded Shells:		Delete All
Store:	empty	•
	Save only reflections that span images	
	Harvest	Cancel

Table 6.2 — Harvest Spots menu items

Menu Item	Function
First Image:	Select the first image in the group of images to be examined for spots.
Number of Runs:	Number of runs to be examined.
Images Per Run:	Number of images to be examined in each run.
Go to Image:	Select a frame filename from this drop-down menu to display the frame in the Image Information Area.
Min. I/sigma(I):	Adjust the criterion for harvesting a spot based on its pixels' intensity versus their standard deviation. Slide the slider between "More Spots" and "Fewer Spots" to vary the minimum I/sigma(I).
Smooth images	A Gaussian filter is applied to the frames prior to harvesting, which reduces the noise and eliminates falsely harvested pixels. For very weak data, however, the "Smooth images" function can interfere with successful harvesting.
Store (Reflection Group Combo Box):	The Reflection Group Combo Box shows a list of reflection groups to choose from. For each group, the group name and number of reflections in the group are displayed. If, instead of the number of reflections, an entry is labeled empty, this indicates an unassigned entry. Choosing the empty entry creates a new group instead of appending to the current one. A color is associated with each reflection group. The color is displayed in the box to the left of the group name. The color helps in recognizing a group while navigating through the software.
Save only reflections that span images	With this checkbox enabled, a spot is only harvested if it is found on multiple contiguous frames.
[left arrow]	Go to the previous step in the unit cell determination process.
[right arrow]	Go to the next step in the unit cell determination process.
Finish	Finish the sequence of steps in the unit cell determination process, beginning with the current step. Perform any tasks that are necessary.
Harvest	Proceed with harvesting according to the options set in the preceding menu items.
Cancel	Leave Manual Mode and return to the initial Unit Cell Determination page, performing no operations and ignoring any changes made to menu items.

6.1.3.3 Index

Figure 6.6 —	ndex menu
Reflections:	Group 0: 185 reflections
Go to Image:	C:\frames\guest\ylid\matrix_01_0001.sfm
	More Reflections Fewer Reflections
Min. I/sigma(I):	20.00
Resolution [Å]:	9999.00 - 0.76
	✓ Reflections must be isolated
	Reflections must span images
	Reflections must be whole
	185 Reflections selected for Indexing
Store:	Empty -
Corrections:	From store From last harvest Manual
	Distance [mm]: 0.00 Pitch [°]: 0.10
	X Beam Center [mm]: -1.33 Roll [°]: 0.13
	Y Beam Center [mm]: 0.17 Yaw [°]: 0.46
Methods:	✓ Difference Vectors
	✓ Fast Fourier Transform
	Least Squares
	Finish Index Cancel

6.1.3.4 Bravais

Figure 6.7 — Bravais menu

Bravais Lattice	FOM	a [Â]	b [Å]	c [Å]	α [°]	β [°]	γ [°]
Cubic F	0.01	21.35	21.35	21.35	129.82	61.01	147.60
Cubic I	0.01	19.33	10.83	20.50	68.38	31.40	80.28
Cubic P	0.00	5.96	9.05	18.40	90.01	90.03	90.03
Hexagonal P	0.01	5.96	9.05	18.40	90.01	90.03	90.03
Rhombohedral R	0.01	5.96	10.84	56.24	94.38	96.05	123.36
Tetragonal I	0.01	5.96	9.05	38.35	76.37	81.10	90.03
Tetragonal P	0.01	5.96	9.05	18.40	90.01	90.03	90.03
Orthorhombic F	0.02	5.96	19.06	37.27	87.13	99.17	108.24
Orthorhombic I	0.02	5.96	9.05	38.35	103.63	98.90	90.03
		E 00	27.27	0.05	00.00	00.00	99.17
Orthorhombic C	0.04	5.96	37.27	3.00	03.30	30.03	33.17
Orthorhombic C Orthorhombic P	0.04 0.89	5.96	9.05	18.40	90.01	90.03	90.03
Orthorhombic C Orthorhombic P Monoclinic C	0.04 0.89 0.03	5.96 5.96 37.27	9.05 5.96	18.40 9.05	90.01 90.03	90.03 90.02	90.03 80.83
Orthorhombic C Orthorhombic P Monoclinic C Monoclinic P	0.04 0.89 0.03 0.90	5.96 5.96 37.27 5.96	9.05 5.96 9.05	9.05 9.05 18.40	90.01 90.03 90.01	90.03 90.02 90.03	90.03 80.83 90.03
Drthorhombic C Drthorhombic P Monoclinic C Monoclinic P Triclinic P	0.04 0.89 0.03 0.90 1.00	5.96 5.96 37.27 5.96 5.96	9.05 5.96 9.05 9.05	9.05 18.40 9.05 18.40 18.40	90.01 90.03 90.01 90.01	90.03 90.02 90.03 90.03	90.03 80.83 90.03 90.03
Orthorhombic C Orthorhombic P Monoclinic C Monoclinic P Triclinic P	0.04 0.89 0.03 0.90 1.00	5.96 5.96 37.27 5.96 5.96	9.05 5.96 9.05 9.05	9.05 18.40 9.05 18.40 18.40	90.01 90.03 90.01 90.01	90.03 90.02 90.03 90.03	90.03 80.83 90.03 90.03
Orthorhombic C Orthorhombic P Monoclinic C Monoclinic P Triclinic P	0.04 0.89 0.90 1.00	5.96 5.96 37.27 5.96 5.96	9.05 5.96 9.05 9.05	9.05 18.40 9.05 18.40 18.40	90.01 90.03 90.01 90.01	90.03 90.02 90.03 90.03	90.03 80.83 90.03 90.03
Orthorhombic C Orthorhombic P Monoclinic C Monoclinic P Triclinic P	0.04 0.89 0.03 0.90 1.00	5.96 5.96 37.27 5.96 5.96	9.05 5.96 9.05 9.05	9.05 18.40 9.05 18.40 18.40	90.01 90.03 90.01 90.01	90.03 90.02 90.03 90.03	90.03 80.83 90.03 90.03
Orthorhombic C Orthorhombic P Monoclinic C Monoclinic P Triclinic P	0.04 0.89 0.03 0.90 1.00	5.96 5.96 37.27 5.96 5.96	9.05 5.96 9.05 9.05	9.05 18.40 9.05 18.40 18.40	90.01 90.03 90.01 90.01	90.03 90.02 90.03 90.03	90.03 80.83 90.03 90.03
Orthorhombic C Orthorhombic P Monoclinic C Monoclinic P Triclinic P	0.04 0.89 0.03 0.90 1.00	5.96 5.96 37.27 5.96 5.96	9.05 5.96 9.05 9.05	9.05 18.40 9.05 18.40 18.40	90.01 90.03 90.01 90.01 90.01	90.03 90.02 90.03 90.03	90.03 80.83 90.03 90.03
Orthorhombic C Orthorhombic P Monoclinic C Monoclinic P Triclinic P	0.04 0.89 0.03 0.90 1.00	5.96 5.96 37.27 5.96 5.96	9.05 5.96 9.05 9.05	9.05 18.40 9.05 18.40 18.40	90.01 90.03 90.01 90.01	90.03 90.02 90.03 90.03	90.03 80.83 90.03 90.03
Orthorhombic C Orthorhombic P Monoclinic C Monoclinic P Triclinic P	0.04 0.89 0.03 0.90 1.00	5.96 5.96 37.27 5.96 5.96	9.05 5.96 9.05 9.05	5.05 18.40 9.05 18.40 18.40	90.01 90.03 90.01 90.01	90.03 90.02 90.03 90.03	90.03 80.83 90.03 90.03
Drthorhombic C Drthorhombic P Monoclinic C Monoclinic P Triclinic P	0.04 0.89 0.03 0.90 1.00	5.96 5.96 37.27 5.96 5.96	9.05 5.96 9.05 9.05	5.05 18.40 9.05 18.40 18.40	90.01 90.03 90.01 90.01	90.03 90.02 90.03 90.03	90.03 80.83 90.03 90.03
Orthorhombic C Orthorhombic P Monoclinic C Monoclinic P Triclinic P	0.04 0.89 0.03 0.90 1.00	5.96 5.96 37.27 5.96 5.96	9.05 5.96 9.05 9.05	9.05 18.40 9.05 18.40 18.40	90.01 90.03 90.01 90.01	90.03 90.02 90.03 90.03	90.03 80.83 90.03 90.03

Table 6.3 — Bravais menu items

Menu Item	Function
Bravais Lattice:	This list shows the 14 Bravais lattice types for the selected unit cell parameters. For each entry, the list contains (from left to right) the Bravais lattice type, the figure of merit (ranging from 0.0 to 1.0, with 1.0 being perfect agreement), and the six unconstrained unit cell parameters for that Bravais lattice type. Bravais lattices that are in agreement with the unit cell are displayed in green, while those that do not are displayed in red. The most likely Bravais lattice type is chosen automatically. If necessary, you may override the program's decision by clicking on a different entry.

6.1.3.5 Refine

Figure 6.8 — Refine menu

Unit Cell:	$\label{eq:asymptotic} \fbox{a= 5.96Å, α=90.00°, V= b= 9.05Å, β=90.00°, Oc$=18.40Å, γ=90.00°}$	=992ų thorhombic	P P		-
	🔽 Libit coll	_			
		E 055	+	0.002	
		0.047	-	0.005	
		18 396	+	0.003	***
		90.00	-	0.007	
	6 [¹]	90.00			
Parameters:	v [9	90.00			
	V [Å3]	991.1	+	12	
	Domain translation	001.1	-	1.44	
	x [mm]	0.00			
	v [mm]	0.00			
	z [mm]	0.00			
Tolerance:	More Ref 0.44 105 Reflections selected for	lections · · · ·	ı.	Fewer F	
	O Show selected Reflection	s			
	Show predicted Reflection	ns			
	RMS XY [mm]: 0.009	RMS a	ngle	[°]: 0.056	
Tools:	Refine	Histogram	s	Transfor	nations
		_			

Table 6.4 — Refine menu items

Menu Item	Function
Tolerance:	Upon startup, the Refine dialog determines a useful value for the tolerance. This may take a few seconds depending on the number of reflections.
RMS XY [mm], angle [°]:	The root mean square of the deviation between observed and predicted spot positions in the XY image plane and along the trajectory of the spot while it passed through the Ewald sphere.
Histograms

Clicking **Histograms...** in the "Refine" step opens a window showing the reflections' distribution of deviances from the calculated orientation matrix. The criteria include:

- H, K, and L;
- X and Y displacement in (mm); and
- Rotation angle in degrees.

Additionally, the user can click on individual bars in the histogram to display the corresponding reflections in a list view.

Orientation Matrix Transformations

Clicking **Transformations...** in the "Refine" step opens a window giving manual control over the orientation matrix.

A transformation matrix is created using the buttons at the top of the window (and the transformation matrix's values can be manually edited by double-clicking the values). Clicking the **Apply Transformation Matrix** button results in a new unit cell, which is shown at the bottom.

This new unit cell may be committed by clicking **OK**, or discarded by clicking **Cancel**.

Figure	6	10	"Orientation	Matrix"	window
riguie	0	. 10 —		IVIALITA	window

0 🎲	rientation Matrix		? <mark>x</mark>	
	a <-> b #1	a <-> b #2	a <-> b #3	
	a <-> c #1	a <-> c #2	a <-> c #3	
	b <> c #1	b <-> c #2	b <-> c #3	
	a -> 2*a	b -> 2*b	c -> 2*c	
	2*a -> a	2*b -> b	2*c -> c	
Trar	nsformation Matrix:			
	1	2	3	
1	+1.00000000	+0.00000000	+0.00000000	
2	+0.00000000	+1.00000000	+0.00000000	
3	+0.00000000	+0.00000000	+1.00000000	
Orie	Appl	y Transformation Matr	ix	
	1	2	3	
1	+0.10605841	-0.08233991	-0.01162683	
2	-0.12978804	-0.06821779	-0.00777078	
3	-0.00427433	+0.02831155	-0.05253889	
	a= 5.96Å, α=90.00 b= 9.04Å, β=90.00 c=18.39Å, γ=90.00	°. V=992ų		
		ОК	Cancel	

6.2 The Reciprocal Lattice Viewer Plug-in

The Reciprocal Lattice Viewer plug-in is a very powerful tool for viewing the harvested reflections in a reciprocal lattice.

6.2.1 Start the Reciprocal Lattice Viewer Plug-in

In the Task Bar's "Evaluate" section, click the Reciprocal Lattice Viewer icon

The Reciprocal Lattice Viewer plug-in opens.

The plug-in automatically reads the reflections from the current project and displays them as a reciprocal space plot.

6.2.2 Views and Tools

Figure 6.11 is a typical unoriented view after opening the plug-in. Harvested reflections are shown based on their color slot (gray in this case). Black dots are weaker reflections that were filtered by the "Intensity Filter" slider at the bottom of the screen.

Figure 6.11 — Unoriented view

Other tools can be accessed by right-clicking on the reflection viewer to give the "Quick Tools" menu (Figure 6.12), and by choosing **RLATT** in the Menu Bar (Figure 6.13).

Figure 6.12 — Quick Tools menu

Rotate	•
Select	•
Measure	•

Figure 6.13 - Full menu tools

RLATT					
Rot	ate				
Edit	:				
Orie	entation				
Unit Cell Tool					
Mea	asure Distance				
Mea	asure Angle				
Vis	ualization				
Inco	ommensurates				

Additional context-sensitive information is available by clicking the "What's This" help arrow in the Menu Bar.

Figure 6.14 — "What's This?" help icon

6.2.2.1 Orienting Views

Left-click and drag the mouse to rotate the lattice display. It is possible to easily see rows and non-fitting peaks (see Figure 6.15).

By moving the intensity slider at the bottom of the display, it is easy to deselect weak reflections. In Figure 6.16, the reflections between the layer lines all turn black when the intensity filter is moved to the left.

With additional rotations, the layers of reflections can be further oriented so that stacks of reflections become visible. Sometimes it is quite useful to right-click on the background and choose Z-rotations from the rotation options. The 2D profiles on the top and to the left are a valuable aid in this process. With practice, the 2D profiles can be organized into clusters. As shown, the 2D profiles are counting intensity. The counting mode can be changed to spot count or turned off completely using the Visualization menu (**RLATT > Visualization**) or by pressing the [s] key to cycle through the counting modes.

Figure 6.17 — An oriented lattice view. The 2D profiles are to the left and to the top.

The distance between layers can be measured by clicking on one of the clusters of lines in the 2D view and then dragging to the next cluster. If you drag over three clusters, then the distance as measured would need to be multiplied by three.

Figure 6.18 — Horizontal measured distance

The Orientation menu allows easy orientation if the cell is indexed (Figure 6.19). Press the [F1], [F2], or [F3] key (these can be pressed at any time to orient the view) or click the appropriate button.

Figure 6.19 — Orientation menu

1 0 0 = along a* (F1)	
0 1 0 = along b* (F2)	
0 0 1 = along c* (F3)	
Reset View (F4)	

-User-Defined Orientations

A (F5)	Define	Display
B (F6)	Define	Display
C (F7)	Define	Display
D (F8)	Define	Display

HKL Layers

		HKL La	yer Mode =	DISABLED	
● *KL	* Layer				
0.11*1		-20		0	+20
O HL	* Thickness				
O HK⁺		±0.0		±0.5	±1.0

-Runs Displayed

 Image: A start of the start of	Scan 1
	Scan 2
	Scan 3

6.2.2.2 Editing Options

The Edit menu is already shown in the right work area, when the plug-in is opened (Figure 6.20). You can also show it by selecting **RLATT > Edit**. It contains useful editing tools for selecting, sorting and deleting reflections.

Figure 6.20 — RLATT edit menu

CEditing Tools
O Box
C Lattice Overlay
◯ Single Spot
O Circle
None (rotate)
Selection Helpers
Select Weak Reflections
Select Current Group
Invert Selection
Counting Table
Current Group: Group 0 - 225
Selection To Current Group
Ungroup Selection
Celect Visible Groups
Group 1
Group 2
Group 4
Group 6
Group 7
Group 9
Group 10
Group 12
Group 14
Deletion Helpers
Delete Selected (finalized at save)
Delete Non-Visible (finalized at save)
Export Visible Spots to P4P

There are four different reflection selecting tools available, which work in the reflection view area using the mouse control. You can either select reflections by drawing a Box, a Circle, or by clicking on individual reflections (Single Spot).

The most useful selecting tool is Lattice Overlay. When activated, you move the mouse pointer to the origin of the selection (normally a trusted reflection), left-click and hold the mouse button and finally drag the mouse pointer to another location. Normally you want to select reflection rows, so the perpendicular lines between the selected points should line up with the reflections. Once you release the mouse button, all reflections ending up on the perpendicular lines are selected (Figure 6.21).

You can hold the [Alt] key down while selecting your starting point (Linux users may find that the [Alt] key has operating system functions). This will lock to the centroid of the reflection on which the mouse pointer was placed.

If you want to start over, click on another spot and repeat the process.

Figure 6.21 — Two lattice lines selected

You can press the [+] key to add lines between the two you have marked. Every time you press the [+] key, one additional line appears. The [-] key removes one line.

Figure 6.22 — View with most of the lattice lines selected (lines to the top and bottom are not selected).

The [Page Up] key adds lines to the outside of the previously-selected line with the same line spacing. [Page Down] removes lines from the outside (Figure 6.23).

Click **Invert Selection** under "Selection Helpers". Now, all the non-fitting spots that did not touch the layer lines are selected.

You can click **Delete Selected (finalized at save)** to mark the selected reflections to be deleted. First, they turn black and could be in principle selected again. They are finally removed from the reflection slot(s) if the **Save** button is clicked or the plug-in is closed.

Alternatively, these selected reflections can be added to a group by choosing a color with the "Current Group" combo box and clicking **Add to Current Group**.

You can hide the newly-assigned group by deactivating its checkbox in the "Select Visible Groups" section.

6.2.2.3 The Unit Cell Tool

Enable the Unit Cell tool either by using the [u] key or by choosing **RLATT > Unit Cell Tool** and clicking the **Unit Cell Tool** button at the top, to put a unit cell lattice in the reflection viewer. This allows you to see if reflections are actually falling on the corners of the box (see Figure 6.25). **Select Plane Size** determines the boundaries of the planes and the number of unit cells displayed.

6.2.3 Measuring Distances and Angles

Right-click on the background, and choose **Measure** to get tools for measuring distances and angles (or select the Options from the **RLATT** menu).

The Measure Distance tool gives two lines, much like the lines in the Lattice Selection tool, that can be oriented and dragged to get lattice spacings (Figure 6.26).

Figure 6.26 — Measure distance tool

With the Measure Angle tool, left-click, hold, and drag a line on a lattice layer ending on the spot that will become the vertex of the angle. When the mouse is released, that point becomes the pivot point for a new line. Moving the mouse with no buttons depressed gives angle measurements (Figure 6.27). As described, the angle measurements will be done in 2D mode (i.e., the angle between the two lines displayed). To measure an angle in 3D mode, hold the [Alt] key while selecting spots as above. The tool will then lock on to spot centroids and the angle will be calculated using spot coordinates. This eliminates errors that might result from measuring using the 2D projection of the current orientation.

Figure 6.27 — Measure angle tool

6.2.4 Writing a .p4p File

At the bottom of the **Edit** menu, there is a button for exporting all visible reflections to a .p4p file. The .p4p file is a text file of crystal, instrument, and reflection information. If the cell and crystal orientation is known, that information is included also (otherwise, dummy values are included).

The sequence of cleaning up a set of reflections using the Reciprocal Lattice Viewer plug-in and then exporting the results for input to CELL_NOW is a useful tool for dealing with hard-to-index crystals.

6.3 Calculate a Data Collection Strategy

APEX3 includes powerful algorithms for determining flexible, efficient data collection strategies for your instrument.

6.3.1 Start the Calculate Strategy Plug-in

In the Task Bar's "Collect" category, click the Calculate Strategy icon

The Calculate Strategy plug-in opens.

6.3.2 Set Strategy Parameters Based on the Unit Cell

- 1. In the "Prepare" tab's "Step 1" area (in the upper right-hand part of the screen), choose the desired unit cell from the drop-down menu.
- 2. In the case of dual-source systems, choose the desired anode with the **Anode:** drop-down menu.
- 3. Set the appropriate resolution limit for the desired strategy using the **Resolution:** field and menu.

NOTE: Check the default resolution (that is estimated by the Determine Unit Cell plug-in) before proceeding.

4. Use the "Symmetry:" drop-down menu and **Apply** button to choose the symmetry.

Set the symmetry to treat Bijvoet pairs as equivalent (**Centrosymmetric**) or inequivalent (**Chiral**), or choose a specific point-group symmetry based on the metric symmetry of the unit cell.

A full sphere may be collected using a setting of 1.

NOTE: Although it is not necessary to click **Apply** if the symmetry was changed, it is very important to click **Apply** if the resolution limit was changed.

Figure 6.28 — Initial view with unit cell and symmetry chosen

Completeness Multiplicity	Prepare Edit				
_100 3 E 10 >	-Step 1. Which unit cell should the strat	tegy be based on			
	Data set with 2471 reflections Two theta limit 55.6 degrees H from 01o 7 K from 01o 12	a= 5.95A, a=90.00°, V=990A ⁵ b= 9.04A, B=90.00°, Othorhombic P c=18.40A, v=90.00°	•		
8 20 - E 2 0	Applied symmetry: Relations 222: Output	Restart	Estimated resolution		
2 1.8 1.6 1.4 1.2 1 0.8	Fork group zzz, usabran	- (Anode: Mo V Resolution: 0.75 + A V		
Resolution [Å]		Symmetry: Chiral (222)	✓ Apply		
 Completeness P90 multiplicity 	Aready measured:		Browse		
E 00	Measure from file:		Browse		
60 0.6	Step 2. Which runs should be collecte	d			
5 20 1 1 1 1 1 1 1 1 1 1	No runs				
● Native ● Cumulative 100 ∃					
	Determine strateg	y Extend strategy	Show reciprocal lattice view		
0 - 2 - 4	Step 3. How should they be collected				
Completeness Average Multiplicity	No scan parameters selected				
0		Select scan parameters			

5. If you have already measured a group of reflections for this sample and do not wish to do so again, activate the Already Measured: checkbox and use the Browse button to select a *.raw or *.hkl file specifying the reflections.

These reflections are removed from the unique reflections list, and a strategy to record missing reflections will be optimized.

NOTE: It is important to make sure that the *.raw or *.hkl file is consistently indexed to the unit cell chosen in step 1.

6.3.3 Determine the Runs to be Collected

1. In the "Step 2" area, click the **Determine Strategy...** button.

The "Parameters for the strategy determination" window opens.

Figure 6.29 — "Parameters for the strategy determination" window

Parameters for the strategy determine	nation 💡 🗙
Data collection strategy	
Crystal to detector distance (mm)	35.0 Reset
Strategy type Generic phi and	omega scans 💌
-Shutterless mode	
Shutterless data collection optimiza	tion
Shortest normalized exposure time	[sec/deg] 1.00 +
Use low temperature safe scan range	s
Avoid overlap due to longest axis	
Strict efficiency theta limitations	
Desired completeness	0.995
Minimum multiplicity for 90% of the dat	ta 1.00
	OK Cancel

- 2. Choose the strategy determination options:
 - 2.1. Set the crystal-to-detector distance.

The strategy optimizer suggests the minimum possible detector distance that can still resolve the reflections (based on the unit cell and crystal mosaicity). Any distance greater than the suggested value should work. Please note that centered lattices are intentionally treated as primitive in case of a mis-assignment or a supercell.

2.2. Choose the strategy type (phi and omega scans, or simply omega scans). KAPPA goniometers also offer options for collecting Friedel pairs in the same frame (with omega scans for those that cannot be collected on the same frame) and for two 360° phi scans in reverse-beam geometry.

The shortest detector distance is suggested for which no reflection overlaps are expected based on the unit cell and crystal mosaicity.

- 2.3. For shutterless data collection, activate the **Shutterless data collection optimization** checkbox and set the shortest desired exposure time.
- 2.4. If you have a KAPPA goniometer and a low-temperature device, use the **Use low temperature safe scan ranges** checkbox to avoid chi angles that are prone to ice formation and to avoid centering problems due to thermal compression of the goniometer head.
- 2.5. Activate the **Strict efficiency theta limitations** checkbox to limit the swing of 2theta to improve efficiency (this may limit the ability to acquire all data for triclinic settings).

This option can only be set when the full theta range is available and a sufficiently large omega scan can be performed. Depending on the hardware configuration, this is at a slightly further distance than the smallest DX.

This option limits the maximum 2 theta swing. The specified resolution will be found on either side of the detector, and therefore you will get the maximum redundancy. However, this may block some goniometer positions and the optimizer will automatically disable this option if it is impossible to achieve a sufficiently high completeness.

2.6. Set the desired completeness and multiplicity (i.e., redundancy).

The checkbox for minimum multiplicity includes the specified minimum multiplicity in the strategy calculation. By default, 90% of the data will have at least the specified multiplicity.

For a regular data collection optimization, a multiplicity of 1 is normally sufficient. If you want to reduce the resulting redundancy, deactivate the checkbox; the optimizer then tries to give complete data with as few frames as possible.

3. Click OK.

The plug-in computes the data collection strategy.

6.3.3.1 The Calculated Strategy Summary

After the calculation, a summary appears showing graphs of the calculated strategy along with a summary of the strategy's runs.

The graphs on the left-hand side of the Task Display Area show relationships between completeness, resolution, multiplicity, and time, along with overall completeness and average multiplicity at the bottom.

The "Step 2" area of the plug-in shows a text summary of the runs including, for each run:

- overall sweep;
- number of reflections to be collected;
- number of unique reflections to be collected;
- (cumulative) multiplicity achieved;
- average multiplicity; and
- completeness.

Following this is a breakdown of the reflection distribution with respect to multiplicity. For example, multiplicity at 90% is the lowest multiplicity measured for 90% of the unique reflections.

At the end of the summary is the average multiplicity and the overall completeness (including missing reflections). If no exposure time is specified in step 3, this area shows the number of degrees scanned. If step 3 was done, you get the run time and the estimated completion time.

Figure 6.31 — Text summary

6.3.3.2 Extending the Strategy

If desired, click Extend strategy... to specify collection of additional data based on multiplicity.

NOTE: Extending the strategy will increase data collection time. It is also necessary to increase the desired multiplicity above the already-achieved one; otherwise, the program will not add additional runs.

Figure 6.32 — "Strategy extension" window

If desired, click the "Edit" tab to manually change the calculated runs' scan parameters.

The fields may be edited by double-clicking.

The sort option is an ideal tool for rearranging runs to achieve completeness as quickly as possible for a certain higher symmetry (e.g., if the strategy was calculated for a non-centrosymmetric point group, but there is a fair chance that the crystal symmetry is centrosymmetric).

	Operation	Active	Distance [mm]	2Theta [deg]	Omega [deg]	Phi [deg]	Chi [deg]	Time [sec]	Width [deg]	Sweep [deg]	Direction	ŀ
1	Omega Scan	Yes	150.459	45.207	-185.354	162.000	54.740	default	default	281.123	positive	
2	Omega Scan	Yes	150.459	10.060	-220.501	0.000	54.740	default	default	281.123	positive	
3	Omega Scan	Yes	150.459	45.207	-185.354	-63.000	54.740	default	default	281.123	positive	
I.	Phi Scan	Yes	150.459	45.207	97.457	0.000	54.742	default	default	360.000	positive	
5	Omega Scan	Yes	150.459	45.207	-185.354	-90.000	54.740	default	default	281.123	positive	
;	Phi Scan	Yes	150.459	10.060	-222.190	0.000	54.742	default	default	360.000	positive	
1	No Operation	Yes										
	No Operation	Yes										
)	No Operation	Yes										
10	No Operation	Yes										
11	No Operation	Yes										
12	No Operation	Yes										
13	No Operation	Yes										
14	No Operation	Yes										
15	No Operation	Yes										
16	No Operation	Yes										
17	No Operation	Yes										
_	No Operation	Yes										

Figure 6.33 — "Edit" tab

6.3.3.3 Viewing the Strategy in Reciprocal Space

If desired, click **Show reciprocal lattice view** to display the strategy in reciprocal space.

Click a radio button in the "Show reflections" area to view unique reflections, all of the symmetric equivalents, or the missing reflections.

NOTE: If missing reflections and the black phi axis coincide, it is likely that the initial crystal orientation on the goniometer head is preventing a 100% complete data set (see Section 4.1.2).

The sliders to the right adjust the visualization of the displayed reflections:

- The **Multiplicity** slider applies a lower-redundancy cutoff (left slider), or a higher-redundancy cutoff (right slider) to help visualize the data collection.
- The Sweep slider can be used to examine the data collection coverage with respect to experiment time.
- The **Point size** slider sets the size of the reflections in the visualization.

Additionally, checkboxes are available to activate and deactivate perspective view, reciprocal axes, the phi axis, and the HKL zero planes. Right-clicking in the window shows a menu with additional keyboard commands (e.g., alignment of the view along reciprocal axes).

Figure 6.34 — "3D strategy result viewer" window

6.3.4 Set the Scan Parameters

 At the bottom of the "Step 3" area, click the Select scan parameters... button. The "Scan Parameters" window opens.

Figure 6.35 — "Scan Parameters" window

Y Scan Parameters		8 ×
-Scan parameters		
Frame angle [degrees]	1.70	reset
Frame time [seconds]	102.0	reset
Shutterless scans		
Normalized scan time: 60.00 Expected end time: Thu Apr	[sec/deg], shutterless 23 22:00:42 2015	
Set Time	ОК	Cancel

- 2. Set the scan parameters:
 - 2.1. Set the desired scan width (i.e., frame angle) based on the crystal's mosaicity.

The suggested frame angle is calculated to avoid overlaps in the rotation direction, based on the current cell parameters and the observed multiplicity. The **Reset** button repeats the calculation.

The strategy optimizer will suggest the widest possible scan width (the default range is between 0.3° and 2.0° , but this range can be edited via the bn-config.py file).

2.2. Set the scan time, in seconds per degree.

The initial suggested exposure time should be checked and eventually modified by the user.

The frame time is initially derived from the statistics of the intensity-versus-resolution table created during peak harvesting (this calculation is repeated when clicking the **Reset** button). Use this value as an indication only; the value may be derived from poor statistics, particularly when the table does not fully cover the intended data resolution.

- 2.3. Select or deselect shutterless scans (if supported by the detector).
- 2.4. If desired, click the **Set Time...** button to open a dialog that allows you to set the finish time (this adjusts the measuring time to best fill the time allowed).
- 3. Click OK.

The "Scan Parameters" window closes. Note that the elapsed time and expected end time have been added to the "Step 3" area.

The strategy calculation is now complete. The plug-in may be closed, and the runs may be used in the experiment by clicking the **Append Strategy** button in the Experiment plug-in.

6.4 Run the Experiment

1. In the Task Bar's "Collect" category, click the **Run Experiment** icon

The Run Experiment plug-in opens, showing a table of operations to be performed.

2. If the list of operations contains orientation matrix runs, select and delete them by clicking (or [Shift] + clicking) the desired rows in the table and then right-clicking on the row numbers at the left and choosing **Delete**.

Figure 6.36 — Deleting matrix runs

		Operation	Active	Distance [mm]
1	Anode		Yes	Anode:
2	Phi Scan		Yes	.40.000
3	Phi Scan		Yes	.40.000
4	X Cut		Yes	,40.000
5	Delete		Yes	
6	🖹 Сору		Yes	
7	🔁 Paste		Yes	
8	Clear		Yes	
9	No Operation		Yes	

3. Click Append Strategy.

The runs found by the Calculate Strategy plug-in appear in the list of operations.

The software changes the filename to the name of the current sample.

Figure 6.37 —List of operations with strategy appended

Setu	p Experiment Monitor Experiment												
Image location: C: Virames'quest'yld Flename or prefix: (yld Fint run: 1 -)	Biposure Retak Gene Urwa	s: automatic te if topped rate new dark images ap images		Default time: 10. Default width: 0.5 Detector format: Detcing:	000 [sec/s 00 [degre 1024 off	mage] • ses] • c1024 •]]	
	Operation	Active	Distance [mm]	2Theta [deg]	Omega [deg]	Phi [deg]	Chi [deg]	Time [sec]	Width [deg]	Sweep [deg]	Directio	n i	-
1	Anode	Yes	Anode:	Mo									
2	Omega Scan	Yes	150.459	45.207	-185.043	162.000	54.740	30.000	1.500	280.500	positive		
3	Omega Scan	Yes	150.459	10.060	-220.190	0.000	54.740	30.000	1.500	280.500	positive		
4	Omega Scan	Yes	150.459	45.207	-185.043	-63.000	54.740	30.000	1.500	280.500	positive		
5	Phi Scan	Yes	150.459	45.207	97.457	0.000	54.742	30.000	1.500	360.000	positive		
6	Omega Scan	Yes	150.459	45.207	-185.043	-90.000	54.740	30.000	1.500	280.500	positive		ä
7	Phi Scan	Yes	150.459	10.060	-222.190	0.000	54.742	30.000	1.500	360.000	positive		
8	No Operation	Yes											
9	No Operation	Yes											1
10	No Operation	Yes											-
11	No Operation	Yes											÷.
A	ppend Strategy Append Matrix Strategy				Load Table	Save Table				Validate	Resume	Execute	ĥ

4. To begin the experiment, click **Execute**.

The "Monitor Experiment" tab opens, and diffraction images begin to appear. This may take a minute or two if new dark current corrections are being collected, or if the generator is being ramped up from a low-power state.

NOTE: If resuming after a data collection interruption, the software will look for the first missing frame, and collect everything after that frame (even if it overwrites existing frames). The software will prompt you to overwrite any existing frames.

Figure 6.38 — "Monitor Experiment" tab

6.4.1 User-Defined Runs and Settings

You can load and save your own experiments (in *.exp format) by using the **Load Table...** and **Save Table...** buttons at the bottom of the "Set Up Experiment" tab.

NOTE:	Only allowed runs are imported when
	selecting a *.exp file. All runs that
	would lead to a collision are skipped
	without further notice.

Data collection controls are shown at the top of the "Set Up Experiment" tab. Usually, the default values are correct.

You can define the data collection mode of your detector with the **Exposures** option. **Automatic** will record uncorrelated (shuttered) images with PHOTON 100 or CCD detectors for exposure times shorter than 10 seconds. Correlated images are taken for longer exposure times on CCD cameras. **Shutterless** is only available for PHOTON II or supported PHOTON 100 detectors. For CCD or PHOTON 100 detectors, you can also force uncorrelated or correlated frames. Exposures of 3 or above correspond to multiple correlated images.

For data collection times of less than five seconds, correlation can usually be turned off. If new dark frames are required, BIS Server will automatically collect them. Activating the **Generate new dark images** checkbox forces the collection of a new dark frame for each exposure time used in the experiment (not before every run, though this can be specified in the bn=config.py file if necessary).

Retake if topped: The instrument will automatically use your instrument's overflow protection routine (not available for shutterless detectors):

- For D8 Series II instruments, this involves a fast re-scan with ½ of the original exposure time (for correlated images; minimum 0.5 s) or 0.5 second (for uncorrelated images).
- For DAVINCI.DESIGN instruments, the attenuator is engaged.

Intensities of the saturated pixels will be scaled and replaced in the original frame.

Activating the **Generate New Dark Images** checkbox forces the collection of a new dark frame for each exposure time used in the experiment. This is only available for CCDs or PHOTON 100 detectors without shutterless mode.

Unwarp images: For detectors with spatial distortion (e.g., detectors using a demagnifying fiber-optic taper), the image can be stored fully corrected (i.e., "unwarped").

If the experiment table shows "default" in the "Time" or "Width" column, the default exposure time or image width is used. You can set this option in the table by entering 0.

The de-icing feature will interrupt the data collection after the specified time and rotate phi by 180°. Afterwards, it continues automatically. Ice is normally blown off the sample holder by this routine. If you are using BIS Server, the system tries to keep your crystal ice-free even after the data collection is finished when the system is idle.

You can influence the naming of your run with the "Filename" field and the "First run" number (e.g., the first active data collection run can get run no. 3).

In Figure 6.37, the time and width are explicitly set for each run, so changing the default width and time will have no effect. If the explicit time or width for a run is deleted so that the box is empty, the word default appears and the default values at the top right will be used.

The software tests the runs for illegal goniometer movements before the runs are executed. Therefore, it is not necessary to explicitly click **Validate**. However, it is useful if you are looking for the maximum allowed omega scan for a certain goniometer position without the risk of starting the data collection once you have found an allowed range.

If you click **Validate** and all movements are valid, the "All operations are valid" window will appear (Figure 6.39).

Figure 6.39 — "All operations are valid" window

🐚 Info	×
1	All operations are valid.
	ОК

6.4.2 Closing APEX3 or the Project

If desired, you can exit APEX3 after you begin data collection:

- In a single-computer setup, BIS Server and the Measurement Server must be left running (or, in the case of D8 Series II instruments, BIS Classic).
- In a dual-computer setup, the Server computer must be left on. If communications are lost between the Client and the Server, frames will be stored on the Server. Typically, they will be in the directory "C:\frames\". They should be copied into the correct project directory before proceeding.

6.4.3 Abort the Experiment if Necessary

To abort the data collection, choose **Instrument > Abort...** or click the **Stop** button ¹⁰⁰ in the Tool Icon Bar.

NOTE: You are not prompted to verify that you wish to abort the data collection.

7 Data Integration and Scaling

Before the data can be used to solve and refine the crystal structure, it is necessary to convert the information recorded on the frames to a set of integrated and scaled intensities.

When setting up the integration, the Integrate Images plug-in creates a subdirectory named "\work" and assigns an output filename for each run's integration results (".raw" for single-crystal data, ".mul" for twins, and ".ram" for modulated samples—plus associated output files). These files are in ASCII form, which can be read by the Scale or Determine Space Group plug-in.

The SAINT Software Reference Manual DOC-269-0175XX provides a detailed description of the process of integration along with the various parameters involved, along with the SAINT file format.

It is possible to integrate while collecting data.

The Scale plug-in corrects for absorption effects in the data set and puts all of the measured data on the same scale. It uses data redundancy to achieve this, and tables and charts of diagnostics are presented throughout the process. Furthermore, Scale is able to correct for crystal volume variations, beam inhomogeneities, and crystal decay.

7.1 Integrating Data

7.1.1 Start the Integrate Images Plug-in

In the Task Bar's "Reduce Data" category, click the Integrate Images icon

The Integrate Images plug-in opens (Figure 7.1), and the orientation matrix and Bravais information are loaded from the database.

Figure 7.1 — Integrate Images plug-in: initial view

Starting Image Filename	Images	Output Filename	A
			Resolution Limit [Å]: 0.617
			Unit Cells:
			a= 5.96Å, α=90.00°, V=990Å ³
			b= 9.04Å, β=90.00°, Othorhor
			C=16.37A, Y=50.00
			=
			Refinement Options
			Integration Options
			End Dur
			Hina Kuns
			Import Runs from Experiment

7.1.2 Set the Resolution Limit

The "Resolution Limit (Å):" field (in the plug-ins upper right-hand corner) sets the upper (i.e., better) resolution limit to which the data will be integrated. The plug-in suggests a resolution limit, but this value can be edited.

Check the suggested resolution limit. If you want a limit other than that suggested, enter it in the field (the recommended minimum resolution is 0.83 Å).

Figure 7.2 — "Resolution Limit (Å):" field

Resolution Limit [Å]:	0.721
-----------------------	-------

7.1.3 Select Runs for Integration

The plug-in's right-hand side has two buttons for defining the data collection runs to be integrated: **Find Runs...** and **Import Runs from Experiment**.

Figure 7.3 — Find Runs... and Import Runs from Experiment buttons

	Refinement Options
\langle	Find Runs Import Runs from Experiment
	Start Integration

The **Find Runs...** button is used to browse to the set of runs to be integrated. This button is normally used when the data collection is finished.

1. Click Find Runs....

The "Select Runs" window (Figure 7.4) opens.

- 2. Usually, the "Select Runs" window has the correct directory and base name as the defaults. If these are not correct, browse to the runs for the experiment of interest.
- **NOTE:** To integrate images from a CD or DVD, browse to the device and find the runs to be integrated. The plug-in automatically writes the result in the "\work" directory for the current project.

3. The window pane on the right-hand side displays all of the runs available in the current directory. Any combination of runs may be selected by simply activating the checkboxes next to the groups.

Figure 7.4 — "Select Runs" window

🐐 Select Runs	२ <mark>२</mark>
Look in:	es/guest/ylid 🔻 🔾 🗘 🎦 🔝 🗐
My Computer	work YLIDMO_04_0729.sfm simple_scans YLIDMO_04_0728.sfm precession YLIDMO_04_0728.sfm fm2fm.tmp YLIDMO_04_0726.sfm YLIDMO_04_0725.sfm YLIDMO_02_##### (1 - 426) report YLIDMO_04_0724.sfm reciprocal YLIDMO_04_0722.sfm YLIDMO_04_0739.sfm YLIDMO_04_0722.sfm YLIDMO_04_0739.sfm YLIDMO_04_0722.sfm YLIDMO_04_0738.sfm YLIDMO_04_0722.sfm YLIDMO_04_0738.sfm YLIDMO_04_0722.sfm YLIDMO_04_0736.sfm YLIDMO_04_0718.sfm YLIDMO_04_0736.sfm YLIDMO_04_0718.sfm YLIDMO_04_0732.sfm YLIDMO_04_0718.sfm YLIDMO_04_0732.sfm YLIDMO_04_0718.sfm YLIDMO_04_0731.sfm YLIDMO_04_0718.sfm YLIDMO_04_0731.sfm YLIDMO_04_0714.sfm
	YLIDMO_04_0730.sfm YLIDMO_04_0713.sfm Select all Deselect all
Directory:	Choose
Files of type: Directories	▼ Cancel

4. Click Choose.

The plug-in populates the list of runs to be integrated with the selected runs.

5. Alternatively, you can click Import Runs from Experiment.

The **Import Runs from Experiment** button determines the runs to be integrated from the experiment that has just been submitted. Using this button allows you to start integration while the data is still being collected.

NOTE: When integrating while collecting data, the Integrate Images plug-in will integrate all of the data currently measured and then wait for the next image, integrate that image, wait for the next, etc.

The plug-in populates the list of runs to be integrated with the runs from the experiment.

7.1.3.1 Modifying Integration Run Lists

By editing the fields in the run list, the starting image name and output filename can be changed. You can use standard clipboard tools (e.g., **Copy**, **Paste**) by selecting a run entry and right-clicking on the entry number. In this way, it is also possible to count the number of frames available for each run.

Figure 7.5 shows a run list entry being modified. (A) shows the original run information. (B) shows the run with the starting image number changed to 51. (C) shows the number of frames to process changed to 363.

Double-click any of the fields in this list to open the value for editing.

Figure 7.5 — Example: manually editing a run list

А	1	C:\frames\guest\ylid\YLIDMO_01_0001.sfm	413	C:\frames\guest\ylid\work\YLIDMO_01.raw
В	1	C:\frames\guest\yli(\YLIDMO_02_0051.sfm)	413	C:\frames\guest\ylid\work\YLIDMO_01.raw
			-	
С	1	C:\frames\guest\ylid\YLIDMO_03_0051.sfm	363	C frames\guest\ylid\work\YLIDMO_01.raw
		· · · · · · · · · · · · · · · · · · ·		

7.1.4 Refinement Options

Although the "Refinement Options" and "Integration Options" windows' default values are generally very good, it may be necessary to adjust the integration box size and other parameters.

1. Click the **Refinement Options...** button in the lower right-hand corner of the plug-in (Figure 7.6).

Figure 7.6 —	Refinement and	Integration	Ontions	buttons
	Rennement and	megration	Options	Duttons

1	Refinement Options	
1	Integration Options	
	Find Runs	
	Import Runs from Experiment	
	Start Integration	

- 2. If necessary, adjust the refinement options (Figure 7.7).
- Figure 7.7 "Refinement Options" window

Per-Image Refinement	
Enable Orientation Refinement	Damping Factor: 1.000
☑ Enable Box Size Refinement	Initial XYZ Box Size [*]: 0.351 0.351 1.151
Periodic Refinement	Global Refinement
✓ Enable Periodic Refinement	✓ Enable Global Refinement
Enable Initial Passes	
Frequency [Images]: 50	Max. Number of Reflections: 9999
Constrain Metric Symmetry of Unit Cell to:	Constrain Metric Symmetry of Unit Cell to:
Orthorhombic	Orthorhombic
Crystal System: Orthorhombic 💌	Crystal System: Orthorhombic 💌
Refinement Parameters	Refinement Parameters
Detector Horizontal Beam Center Vertical Beam Center Distance Pitch Roll Yaw Ont Cell Axes Angles	Detector Vertical Beam Center Ver
P-Vectors First q-Vector ▼	Image: Provide the second
NOTE: To change the default values that appear in the "Refinement Options" window, create a text file C:\saint.ini. Copy the sections and parameters you want to change from C:\bn\src\interface\saint.ini into C:\saint.ini (do not change C:\bn\src\interface\saint.ini).

Table 7.1 — Refinement options

Option		Usage
Per-image refinement	Enable Box Size Refinement	If this checkbox is activated, SAINT will attempt to refine the initial box size estimates (i.e., the size of the integration box) to optimize the angular range of the volume used to store the model spot profile and the profile of each reflection integrated. It is sometimes necessary to set the integration box to compact values (in "Initial XYZ Box SIze") in order to avoid reflection rejections (e.g., exceeding the frame queue) or too many twin overlaps.
	Initial XYZ Box Size	The plug-in's estimate of the spot size in degrees. The program tries to come up with a good starting value, but sometimes the box is too small. This value is refined at the beginning of integration, so it usually does not need to be changed unless instructed by the plug-in.
Periodic refinement	Frequency (Images)	This parameter determines after how many frames the periodic least squares refinement will be carried out during the integration. This has no effect on the least squares refinement taking place throughout the initial passes prior to integration. Consider reducing the default value for wide frames.

3. Click **OK** to close the window.

7.1.5 Integration Options

 Click Integration Options... on the plug-in's right-hand side. The "Integration Options" window opens (Figure 7.8).

Figure 7.8 — "Integration Options" window

Thtegration Options	§ ×
Model Profiles	Background Update
✓ Enable LS Profile Fitting	Background Update Scaling Factor: 1.000
Blend Profiles from All Detector Regions Intensity/Sigma Lower Limit for Model Profile Update: 10.000 Fraction of Model Profile Maximum for Simple Sum Mask: 0.050	Image Queue Active Image Queue Half-Width [Images]: 7
Intensity/Sigma Upper Limit for LS Model Profile Fit: 8.000 Lower Resolution Limit for LS Model Profile Fit [Å]: 9999.000 Profile XYZ Half-Widths: 4 4 4	Beam Monitor Enable Beam Monitor Normalization Normalize each Run Separately
More Options	OK Cancel

2. Click the **More Options** button to expand the window (see Figure 7.9).

Figure 7.9 — "Integration Options" window (expanded)

Integration Options	? <mark>- ×</mark>
- Model Profiles	-Background Update
Enable LS Profile Fitting	Background Update Scaling Factor: 1.000
Blend Profiles from All Detector Regions Intensity/Sigma Lower Limit for Model Profile Update: 10.000	Image Queue
Fraction of Model Profile Maximum for Simple Sum Mask: 0.050 Intensity/Sigma Upper Limit for LS Model Profile Fit: 8.000	Beam Monitor
Lower Resolution Limit for LS Model Profile Fit [Å]: 9999.000 Profile XYZ Half-Widths: 4 4 4	Enable Beam Monitor Normalization Normalize each Run Separately
-Active Mask	Twin Overlap Determination
Generate Mask:	Minimum Common Volume [%]: 4.000
Fractional Lower Limit of Average Intensity: 0.000	Separation Factor: 1.000
O Use Pre-Existing Static Mask:	Maximum Range: 1.300
Active Mask File:	Modulated Structure Integration
O Use Pre-Existing Dynamic Masks	Maximum Satellite Index: 1
Algorithm	Output / Diagnostic Files
Use Narrow Frame Algorithm Use Wide Frame Algorithm	Generate Diagnostic Plot Files
Marcha Carda Caradathan	Keep Temporary Files
Number of Monte Carlo Simulations:	Append Listing Files
	L Hide Log Window
Image Timeout	Verbosty of Listing File: 2
Fewer Options	OK Cancel

3. Set the options as necessary for your data.

Table 7.2 — Integration options

Option		Usage	_	
	Blend Profiles from All Detector Regions	During the integration, the model profile shape is determined separately for nine regions of the detector (see picture). Blending the model profiles results in less variation across the detector area, and may provide better statistics for regions where the reflections are very weak.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Model Profiles	Intensity/Sigma Lower Limit for Model Profile Update:	Prior to and during integration, a model of the average reflection profile shape is determined and updated. This profile is used to get a better estimate for the true intensity of weak reflections. This parameter sets an Intensity/Sigma cutoff which determines the reflections that will be used to update the model profile. All reflections with an Intensity/Sigma value lower than this threshold are ignored. It may be necessary to lower this value for frames with only weak reflections (typically in conjunction with activating the Blend Profile option).	Threshold Don't use when updating profile	
Active Mask	Fractional Lower Limit of Average Intensity:	(This option is useful for CCD cameras, but should not be used for PHOTON detectors.) To compute an active pixel mask, the software has to determine which pixels are active. This decision is made by comparing the counts that were registered by each pixel with the average counts on the image. A pixel is defined as "active" if it contains more counts than the fraction of average intensity which is specified here. A value of 0.5 normally works fine for Mo data. A lower value is normally better for Cu data (~ 0.35). The resulting mask ("_am_XX_XXX.sfrm") should be checked in the "/work" directory. If the value is set too high, it is possible to mask large areas of your detector unknowingly. PHOTON instruments use computed occlusion mask files "_xa_XX_XXX.sfrm", which include the bad pixel and beamstop shadow information, as integration masks.		
Use narrow frame algorithm		The wide-frame algorithm differs from the narrow-frame algorithm as follows:Spot sizes in Z are estimated based on partiality statistics accumulated for those		
Algorithm	Use wide frame algorithm	 Orientation least squares uses both "fulls" and "partials", with "fulls" given zero weight in Z. Reflection profiles are collapsed in Z for purposes of correlation with model profiles and LS profile fitting. Spots that collide in Z (i.e., spots at similar X and Y with overlapping intensity on a common frame) are recognized and excluded from output. Their Z centroids may occur on the same frame, or on different (and not necessarily adjacent) frames. Integration of wide-frame twin and modulated-structure data are both supported although not recommended, since problems with spot overlap will tend to increase. The wide-frame algorithm will usually give better results in cases where the frame width is substantially greater than the spot width. Acquisition of wide frames often degrades the signal-to-noise ratio, especially for weak reflections, and results in a higher number of overlapping spots. Narrow-frame data collection is therefore recommended, and will usually result in bioher data guality. 		
lmage Queue	Active Image Queue Half-Width (images)	The number of frames in the in-memory frame queue will be 2 entered here. The default is N = 7, corresponding to a 15-fram fine for most purposes. The accepted range of N is 2 - 32, po 5 to 65 frames. It is recommended to reduce the number for wide frames.	N + 1, where N is the value ne queue, which should be roducing queue sizes from	

^{4.} Click OK.

7.1.6 Start the Integration

Click the **Start Integration...** button on the lower right-hand side of the plug-in.

Integration begins, and the "Integration" tab opens showing the SaintChart images for monitoring the integration.

A .raw file (containing the unmerged raw intensities) is written for each run. If multiple runs are integrated, a merged intensity file is written as well. The filename of the merged file contains a "0m" for the run number.

At the end of the integration run, the plug-in carries out a global refinement of crystal and detector parameters, followed by a statistical analysis of the integrated data set. The results are reported in the text display at the bottom of the "Integration" tab.

7.1.6.1 Monitoring Integration Progress with SaintChart

SaintChart is a powerful tool for monitoring the progress of the integration process and for graphically presenting the results of the integration process (Figure 7.10).

To the right of the image area are a series of checkboxes that select the displays. Activate or deactivate the checkboxes to add or remove displays.

Change the text area by clicking and dragging on the line between the text and image areas. You can also expand the windows to fill the available image area by clicking **Chart > Tile** in the Menu Bar.

Figure 7.10 — SaintChart view

For a full description of SaintChart's windows and functions, refer to Section 11.1.

Chart Files

After integration, the results are reported in the text display and a chart file (*.cht) is written to the work directory. You can save and open chart files using the commands under **Chart** in the Menu Bar.

7.2 Scaling Data

The Scale plug-in's underlying engine is either SADABS for single crystals or TWINABS for twinned samples. The only required inputs for the Scale plug-in are:

- the integration results from the Integrate Images plug-in; and
- the Laue group.

For a more detailed description of the plug-in's parameters, refer to the SADABS documentation file located at "C:\bn\SXTL\help".

7.2.1 Start the Scale Plug-in

In the Task Bar's "Reduce Data" category, click the Scale icon

The Scale plug-in opens.

7.2.2 Set Up the Scale Operation

Figure 7.11 shows the right-hand portion of the plug-in's "Setup" tab.

Figure 7.11 — "Setup" tab

Setup		
Input Folder	C:\frames\guest\ylid\work	
Input File(s)		
	MO_0m.raw	
	Select All	Deselect All
_		
Laue Group	mmm	
Point Group	mmm 🔻	
✓ Additional S	Spherical Absorption Correction	
Mu*r of Equi	ivilant Sphere	0.20
Absorption Co	prrection	
Multi-Sca	an	
Numerica Numerica	al Mu Calculated al Mu From Formula	
Advanced Setup)	
Start Over		Start

1. Check that the defaults are correct.

Pay special attention to the Laue Group symmetry; it is only automatically chosen when the plug-in is opened for the first time. In contrast to the multi-scan (i.e., empirical) absorption correction, numerical absorption correction requires the Index Crystal Faces plug-in (Section 7.3).

2. If necessary, read in the runs to be scaled:

Click the "Input Folder:" field's **Browse** button eflection files available for scaling. If the files are not visible, select the correct folder. A single run can be selected by highlighting that run and clicking **Open**. All runs with the same base name can be chosen by highlighting any of the runs in that series and clicking **Open**. The runs with the selected base name appear in the "Input File(s)" area, and they can then be selected individually with checkboxes. Selecting a merged file (i.e., the one ending in "m" rather than a run number) will use all of the runs that were integrated during the same integration job. The program will assign filenames for the output files. To change these names, edit the "Output HKL File Name" field under the "Advanced Setup" tab.

- 3. Choose the preferred Laue group and point group.
- 4. If necessary, adjust **Additional Spherical Absorption Correction** (it is not necessary for a numerical absorption correction, but it can still be used).

It is possible to apply an additional absorption correction assuming a spherical crystal with given μr , where μ is the linear absorption coefficient (in mm⁻¹) and *r* is the radius of the equivalent sphere (in mm). This correction is included because the theta-dependent part of the absorption cannot be modeled well by comparing equivalent reflections for the empirical absorption correction (because these invariably have the same 2theta values). The main effect of applying it will be to increase the equivalent isotropic displacement parameters in the resulting refinement.

NOTE: It is strongly recommended to set this parameter correctly for large, strongly-absorbing crystals. Otherwise, your data will be biased.

5. If necessary, set additional parameters under the "Advanced Setup" tab.

These include:

- Fast scan resolution cutoff
- Allow for crystal decomposition by B-value Refinement
- Lambda correction
- 6. Click Start.

The plug-in proceeds to the "Parameter Refinement" tab.

7.2.3 Refine the Parameters

The "Parameter Refinement" tab shows the reflection statistics before refinement, under the "Reflections" tab (Figure 7.12).

1. If necessary, set the refinement parameters (the defaults work well in most cases).

Two parameters deserve particular attention:

- Restraint ESD for Scale Factors: Restrains the scale factors from shifting too much during refinement. Relaxing the restraints a bit may help in some cases (e.g., for heavy absorbers or crystals larger than the beam), but be careful not to over-fit the data.
- Absorption Type: Sets the order of spherical harmonics used for the absorption correction. Medium is fine for all data sets. If there are heavy atoms in the unit cell and the data redundancy is high, the Strong Absorber setting may help.

2. Click Refine.

The plug-in proceeds to the "Refinements" tab.

Figure 7.13 shows a typical refinement result. The R-values should decrease quickly and converge to similar values. The Mean Weight should increase and converge. The mean weight gives feedback about the data quality or the correct Laue group assignment. Values below 0.7 are suspicious, and the data should be carefully checked.

- 3. If necessary, make changes to the refinement parameters and click **Refine** to refine the data set again.
- 4. When you are satisfied with the refinement, click **Next**.

The plug-in proceeds to the "Error Model" tab.

7.2.4 Refine the Error Model

Initially, the graphs in the "Error Model" area show an initial error model based on the default values in the "Outlier Rejection" area.

1. If necessary, adjust the parameters in the "Outlier Rejection" area.

The table contains a "Fast Scan" column. Runs below 10° 2theta can be selected as "Fast Scans". Fast scans are recorded for shutterless data collections to prevent missing strong reflections in the data set because of detector saturation in the main runs. The "Fast Scan" is only used to fill in missing reflections in the main data set.

2. Click Error Model.

Figure 7.14 shows typical Error Model results.

Figure 7.14 - Error Model results

- 3. Examine the error model for problems:
 - R(int): Agreement factor of the reflection intensities of the individual runs compared to the mean intensities of symmetry-independent reflections based on the Laue/point group.
 - Number of Reflections: The column height displays the total number of reflections per run. The darker part of the column represents the number of reflections below 2 l/sigma(I)./
 - **K**: Scale factor for the standard uncertainties.

4. If necessary, adjust the error model and click Error Model again.

For example, to reject fewer reflections, increase the "|I-<I>|/su ratio for rejection" parameter in the "Outlier Rejection" area.

- **NOTE:** If the R-values in one run are significantly higher than the others, you can repeat the entire scaling calculation with that run omitted. Deactivate the checkbox next to the "bad" run, and click **Repeat Parameter Refinement**.
 - 5. When you are satisfied with the error model, click **Finish**.

The plug-in proceeds to the "Diagnostics" tab.

7.2.5 Examine the Diagnostic Plots

Diagnostic plots provide valuable insight into the quality of the data and possible problems with the data.

Click the tabs at the bottom of the plug-in to view the diagnostic data (some of these plots are reviews of plots that have already been displayed).

7.2.5.1 Scale Variations

Figure 7.15 — Overall Scale and R(int) variations

The Scale Variations plot (Figure 7.15) shows the overall variation in Scale and R(int) for the individual frames. The Scale plot should be flat (for strongly-absorbing, irregularly-shaped crystals it will probably be sinusoidal), and the R(int) plot should not show large variations (more than 2%).

Overall scale and R(int) variations for YLIDMO

DOC-M86-EXX229 V1

7.2.5.2 Spatial Distribution Plots

Spatial Distribution plots are generated for each data collection run. They indicate spots that were either stronger or weaker than expected with a deviation from the mean intensity larger than three standard uncertainties.

Typically, the points of disagreement are spread fairly evenly over the detector face (Figure 7.16).

If the points are clustered in a single area or if there are significantly more spots of one color than another, the data should be examined critically. Figure 7.17 is from a data set in which the reflections collected in a certain area are consistently weaker than expected (possibly because the beamstop is not centered in the direct beam, or because the "<name>_xa_<run>_<frame>.sfrm" files were not present during integration). This kind of problem may affect the final results.

Figure 7.17 — Spatial Distribution plot showing a problem area

7.2.6 Close the Scale Plug-in

Click the **Close** button X in the upper right-hand corner of the plug-in.

The final hkl is generated, and the plug-in closes.

7.3 Face Indexing with the Index Crystal Faces Plug-in

In order to perform a numerical absorption correction in the Scale plug-in, the crystal faces must be indexed. This allows a very exact crystallographic description of the crystal's shape.

Indexing the crystal faces is an optional step in the data processing, which can be skipped. Nevertheless, a numerical absorption correction may give better results compared to an empirical correction for strongly-absorbing materials.

Furthermore, the crystal video is an ideal tool for keeping track of the measured crystal size (automatically determined during the indexing process), color, and morphology.

Once you have a unit cell for your crystal (required), the Index Crystal Faces plug-in allows you to define faces directly over images of the crystal.

7.3.1 Starting the Index Crystal Faces Plug-in

From the Task Bar's "Reduce Data" category, click the Index Crystal Faces icon

The Index Crystal Faces plug-in starts and shows the crystal image (Figure 7.18), if a crystal video was recorded previously. Otherwise, a pop-up window appears from which you can either record a crystal video (**Acquire New...**) or load an existing video from another directory (Figure 7.19).

Figure 7.18 — Index Crystal Faces plug-in: initial view

7.3.2 The Index Crystal Faces Plug-in Interface

The Face Indexing plug-in uses a dial at the bottom of the screen to step through the images of the crystal, and a tool called the T-tool to define faces. The Face List, shown on the right, displays the faces you have defined for the crystal and their distance from the instrument center.

Table 7.3 —	Face indexing	controls

Item	Description
Show T-tool	Show and hide the T-tool for a better view of the crystal faces.
Max. Miller index:	The highest Miller index shown as face normals in the overlay.
Max. out-of-plane angle (deg):	When the T-tool snaps to a face normal, the plane you define may differ from the specified index by a maximum of this amount.
Show possible face normals	The plug-in suggests face normals.
Snap to possible face normals	The T-tool snaps to the suggested face normals.
Dial (or mouse wheel)	Use the dial to rotate around 360° of phi. The right-click menu lets you rotate phi by 180° to define parallel faces.
Crystal face information	Shows the Miller indices of a given face, the face's distance from the instrument center, and the out-of-plane angle.

Table 7.4 — Face list controls

Item	Description
Unit Cell	Displays the unit cell that the plug-in uses to display faces in the overlay.
H,K,L	Miller indices of the normal to the specified face.
Distance (mm)	The specified face's distance to the center of the instrument.
Remove Invisible Faces	Faces obscured by the body of the crystal are removed from the Face list.
Closed:	Displays whether the faces you have defined encapsulate a closed volume.
Size (mm):	Dimensions of the crystal, calculated according to the defined faces.

7.3.2.1 Setting View Options

Depending on the color and reflectivity of the crystal and background, you may want to adjust the display colors or re-set the crystal center.

Right-click in the image display area, and choose **Configure Overlay** from the menu.

The "Overlay Configuration" window appears (Figure 7.20).

Figure 7.20 — "Overlay Configuration" window

Overlay Configuration	? 🔀
Crystal Edges	
Show crystal edges	Color: Width: 2
	Show backside
Crystal Faces	
Show crystal faces	Color:
Crystal Labels	
Show constal labels	Color:
	Font size [pt]: 12
Axis Labels	
Hide axes	Colors:
 Show reciprocal space axes 	
O Show real space axes	
Show goniometer axes	Font size [pt]: 12
Microscope	
	X center [pixels]: 643
	Y center [pixels]: 444
	Tilt angle [*]: 0 🚔
	OK Cancel

7.3.3 Specifying Crystal Faces

1. Use the dial control at the bottom of the screen (or use the mouse wheel) to rotate the crystal until one of the faces is parallel to the microscope axis as in Figure 7.21.

Note that, because **Show T-Tool** and **Show possible face normals** are activated, the plug-in suggests possible faces (whose indices are within the Max. Miller Index range) with dotted lines.

Figure 7.21 — Face parallel to microscope axis

2. Move the mouse cursor to the dotted line that is perpendicular to the face.

The mouse cursor snaps to the possible face normal. A line appears to show the possible face. This line defines a plane along the microscope axis, which should be parallel to the crystal face. Note that these are possible face normals, and there may not be a visible face at every line.

- 3. Use the mouse to move the line until it touches the crystal face (Figure 7.22).
- 4. Click to fix the face.

An entry appears in the Face List showing the Miller Indices of the crystal face, along with the face's distance from the instrument center.

Figure 7.22 — Fixing the face

5. Repeat the steps in this Section to specify all of the crystal's visible faces.

If the plug-in does not suggest a face normal for a certain face, you can increase the value in the "Max. Miller index" field to show more suggested normals. As you define more faces, the plug-in will begin to display its geometric model of the crystal, superimposed over the video images (Figure 7.23).

Figure 7.23 — Some—but not all—faces defined

The geometric model should fit the real crystal dimensions (Figure 7.24).

If the overlay displaces while rotating the crystal view, either the crystal was not perfectly centered or the microscope center is incorrect (see Section 7.3.2.1).

Figure 7.24 —All faces defined

7.3.4 Editing the Face List

Consider Figure 7.25. The face (1 3 -2) does not appear to define a face correctly. Removing this face will give a more accurate model of the crystal.

1. In the Face List, select the HKL (1 3 -2).

Figure 7.26 — Face List right-click menu

Unit Cell:					
a=21.35Å, b=11.82Å, c=8.80Å α=90.00°, β=96.61°, γ=90.00° V=2205Ų, Monoclinic C					
H K L Distance [mm]					
0 0 1 0.07					
0 0 -1 0.08					
1 -1 -1 0.21					
2 0 -1 0.12					
-2 0 1 0.13					
-1 -1 1 0.17					
0 1 0 0.30					
-1 0 0 0.25					
-1 -1 0 0.32					
1 3 -2 0.26					
	Add				
	Edit				
	Remove				
	Clear list				

- 2. Right-click and choose **Remove**.
- **NOTE:** Alternatively, you can select **Clear List** to start over, or **Add** and **Edit** to define your own faces and see where they appear on the crystal.

7.3.5 Scaling with Face Indices

- 1. When all faces are defined, the plug-in has accurate crystal dimensions (as shown in the bottom right-hand corner). At this point, you can exit the Face Indexing plug-in and proceed with scaling.
- 2. In the Scale plug-in, be sure to select **Numerical Absorption Correction** under the "Setup" tab.

This page intentionally left blank.

8 Examining Data

After integrating and scaling the data, the crystal's space group is determined and optional simulated precession photographs are calculated to further evaluate the overall quality of the data. Five plug-ins are available for this:

- Determine Space Group (based on XPREP);
- Analyze Data (which opens the command-line version of XPREP);
- Synthesize Precession Images (for looking at undistorted slices of reciprocal space);
- View Diffraction Space (for creating a 3D view in the reciprocal space based on measured frames); and
- Find a Reflection (for finding a reflection in the acquired images).

8.1 Using the Determine Space Group Plug-in

8.1.1 Start the Determine Space Group Plug-in

In the Task Bar's "Examine Data" category, click the **Determine Space Group** icon The plug-in opens with the "Setup" tab active.

8.1.2 Set Up the Determination Parameters

- 1. In the plug-in's "Setup" tab, check that the default-loaded files are correct (Figure 8.1).
- **NOTE:** Typically the files to use for space group determination are the "\work" directory's *m.p4p file (containing the final unit cell parameters from integration) and *m.hkl file (containing the corrected intensities). You can browse to choose other files if desired.

Figure 8.1 — "Setup" tab

		hk	file YLIDMO.hkl		
		-	fle: YUDMO 0m p/p		
		P*	plile. [TEIDMO_0III.p4p		
. 51					
but Hies					
ut file: YLIDMO.ins			output .hkl file: YLIDMO.hkl		
ile: YLIDMO.prp			output .sca file:		
C-II					
a	b	c	alpha	beta	gamma
5.96545	9.04235	18.39423	90	90	90
esds 6e-05	0.00010	0.00019	0	0	0
erimental Parameters					
erimental Parameters		_ Formula Type ———			
erimental Parameters		Formula Type			
erimental Parameters		Formula Type © Chemical Formula O Protein Sequence			
erimental Parameters mula C11H1002S1		Formula Type			
zimental Parameters mula C11H1002S1 Must be chiral		Formula Type			
rimental Parameters nula C11H1002S1 Must be chiral Jation Type: Mo		Formula Type			
rimental Parameters nula C11H1002S1 Must be chiral lation Type: Mo		Formula Type			
rimental Parameters nula C11H1002S1 Must be chiral Ration Type: Mo		Formula Type Chemical Formula Protein Sequence			
imental Parameters ula [C11H1002S1 Must be chiral ation Type: Mo		Formula Type Chemical Formula Protein Sequence		v	Ne

2. Click Next.

The plug-in proceeds to the "Lattice Exceptions" tab.

8.1.3 Examine the Lattice Exceptions

The plug-in evaluates the data and suggests a lattice type based on the mean intensities and the mean int/sigma.

The green bar is the lattice type recommended by the software. In general, the higher and wider a peak is, the more likely the lattice type (Figure 8.2).

The height and width of the bars on the lattice page are determined as follows: The height is 1.0 - (observed lattice exceptions, divided by the number of possible lattice exceptions). If there are no lattice exceptions, the height is 1.0. The more lattice exceptions there are, the closer the height is to 0.0

In general, there is a wide variation in the heights, with the "correct" answer and P (if it is different) having heights of 1.0, and the others having various smaller heights.

width = 1.0 - (strong lattice exceptions, divided by the number of observed exceptions)

For most cases, the numbers are virtually identical, which gives a width near 0. So, there is a small minimum width. If the value is 0, the width will be the maximum.

- 1. If you know that your sample has a different lattice type than that suggested by the plug-in, you can choose it from the **Select Lattice Type** pull-down menu.
- 2. Click Next.

The plug-in proceeds to the "Space Group Determination" tab.

8.1.4 Choose a Space Group

The plug-in determines the reduced unit cell based on the chosen lattice type.

Figure 8.3 — Space group determination

Setup V Lattice Exceptions V Space Group Determination V Statistics V Unit Cell Contents	Set Up Files Cell Information Diagnostics			
Bravais Lattice				
Option A B C Alpha Beta Gamma Volume	R(sym)			
C Bravis Lattices	0.016			
Systematic absence exceptions Systematic	absences not required for triclinic systems			_
b c n 21ca. n	21abn21			
N 548 548 552 12 397 403 404	17 212 210 208	38		
N I>3s 488 476 464 2 321 332 281	0 178 187 163	2		
<i> 34.3 41.2 45.8 0.1 51.2 50.9 28.3</i>	0.0 43.2 50.3 37.0	0.1		
24.9 25.0 25.0 1.1 23.6 23.6 16.2	0.8 22.5 25.7 23.2	0.9		
- Facalum atalistics				
			1	2
Non-centrosymmetric: 0.736 Mean JE*E-	1 0.698	Centrosymmetric:	0.968	
Identical indices and Friedel opposites combined before calculating R(sym)				
Space Group No. Type Axes CSD R(sym) N(eq) Syst. Abs. CFOM				
Encode Groups				
Choose a different space group:	P1	v	Repeat	
			Next	
			Finish Start Over Exit	1

- A list of possible Bravais lattices is shown based on the R_{sym} value (the agreement of tentatively symmetrically equivalent reflections). The unit cell metrics can support the selection of a certain Bravais type.
- A list of possible systematic absences (extinctions) for the crystal system is shown. The number of violating reflections, the number of strong violations and the average intensity and l/sigma(I). The table may help to select a suggested space group, or even to select a space group that was not suggested.
- 3. Check the E-value statistics to determine if the space group is centrosymmetric or non-centrosymmetric.

The expected values for the mean IE*E-1I are calculated for a centrosymmetric and a non-centrosymmetric space group. The mean IE*E-1I for the observed data set is displayed in the text box.

The slider is used to show how the true mean IE*E-1I fits in with the calculated values for the mean IE*E-1I. If the value is closer to the calculated centrosymmetric value, then the space group is probably centrosymmetric. If the value is closer to the calculated non-centrosymmetric value, then the space group is probably non-centrosymmetric.

- 4. At the bottom of the Task Display Area, examine the suggested space groups and choose a space group by clicking its radio button.
- NOTE: To choose a space group other than the suggested ones, click the Choose a different space group: radio button. This opens a drop-down menu of all permissible space groups.
 - 5. Click Next.

The plug-in proceeds to the "Statistics" tab.

8.1.5 Examine the Reflection Statistics

Figure 8.4 — "Statistics" tab

Infinity				cluding medel opposi	tes)					
Resolution							High 0.84		Set New Limits	Set Limits and Redo Statist
	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Bint	Rsigma		
18.39 - 3.63	22	23	95.7	3.96	2039.3	88.67	0.0158	0.0101		
3 63 - 2 27	50	50	100.0	7.22	1284.4	123.85	0.0132	0.0068		
2.27 - 1.74	74	74	100.0	7.84	666.8	105.95	0.0131	0.0081		
1.74 - 1.48	75	75	100.0	7.69	537.6	103.40	0.0145	0.0092		
148-134	73	73	100.0	7.51	266.8	80.36	0.0173	0.0103		
1.34 - 1.24	67	67	100.0	7.12	231.5	74.29	0.0199	0.0111		
1.24 - 1.16	73	73	100.0	6.73	272.8	71.94	0.0196	0.0116		
1.16 - 1.10	72	72	100.0	6.42	143.0	50.78	0.0252	0.0158		
1.10 - 1.05	71	71	100.0	6.17	126.0	45.01	0.0290	0.0166		
1.05 - 1.00	73	73	100.0	6.00	111.0	43.36	0.0317	0.0198		
1.00 - 0.96	89	89	100.0	5.70	97.3	36.87	0.0359	0.0218		
0.96 - 0.93	67	67	100.0	5.61	70.7	31.45	0.0403	0.0271		
0.93 - 0.90	74	74	100.0	5.36	72.5	29.01	0.0403	0.0284		
0.90 - 0.87	92	92	100.0	4.93	49.7	22.33	0.0541	0.0372		
0.87 - 0.85	57	57	100.0	4.68	43.0	20.77	0.0536	0.0421		
0.85 - 0.83	71	71	100.0	5.13	41.1	20.41	0.0639	0.0415		
0.83 - 0.81	88	88	100.0	4.90	41.3	18.30	0.0658	0.0444		
0.81 - 0.80	41	41	100.0	4.54	34.7	17.02	0.0659	0.0494		
0.80 - 0.78	89	89	100.0	4.63	28.9	14.31	0.0753	0.0571		
0.78 - 0.76	90	91	98.9	3.29	27.7	11.52	0.0711	0.0773		
0.76 - 0.75	41	51	80.4	1.65	25.7	8.34	0.1018	0.1106		
0.85 - 0.75	420	431	97.4	4.12	33.55	15.26	0.0687	0.0574		
	1449	1461	99.2	5.64	221.43	46.26	0.0192	0.0134		

- 1. Adjust the statistics parameters if desired:
 - The two pull-down menus and the checkbox at the top of the "Statistics" tab allow you to create and switch among subsets of the data, and to control merging of equivalent reflections.
 - The "Change Resolution Limits (Å):" area allows you to adjust the range of resolutions for which statistics are displayed and also to cut the data or create a new subset of reflections.

2. After you have adjusted the quantities in the fields, click **Set New Limits** (which creates a new data set with the specified resolution) or **Set New Limits and Redo Statistics** (which sets limits on the current data set and recreates the tables and graphs).

NOTE: It is possible to revert the selection with the **Current dataset:** drop-down menu.

- 3. Examine the data presented in the table of statistics (Figure 8.4) and in the "Graphs" tabs along the bottom of the screen:
 - Is the completeness near 100%?
 - Are the redundancies at various resolutions close to the desired values?
 - Are R_{int} and R_{sigma} small and increasing smoothly from top to bottom (low-resolution to high-resolution data)?
 - Are the Overall Weighted R(int), Overall Weighted R(sigma), and Lowest Resolution (Å) appropriate for your experiment?

Figure 8.5 — Graphs 1

Figure 8.6 — Graphs 2

4. Click the **Next** button.

The plug-in proceeds to the "Unit Cell Contents" tab.

8.1.6 Check the Unit Cell Contents

The "Unit Cell Contents" tab displays the current formula from the plug-in's "Setup" tab, a tentative Z value, the density, and the atomic volume.

Figure 8.7 —	"Unit Cell Contents" tab
--------------	--------------------------

Tertative 2 Lints Pho: 1381 Non-H atonic volume: 17.7 C 44.00 64.05 1 H 40.00 4.09 1 0 8.00 15.51 5 4 0 8.00 15.51 1 5 4 0 15.55 1	omula:	C11H1002S1				Update Formula					
Bit Non-H atomic volume: 177 0 44.00 64.05 % H 40.00 4.89 % 0 8.00 15.51 % S 4.00 15.55 %	entative	e Z (units/cell): 4.0				Update Z Units					
C 44.00 64.05 % H 40.00 4.49 % 0 9.00 15.51 % 9 4.00 15.55 %	iho: 1.381					Non-H atomic volume: 17.7					
	с 0	44.00 64. 8.00 15.	05 % H 51 % S	40.00 4.00	4.89 % 15.55 %						
									Next		

- 1. Check that the information is correct:
 - 1.1. Check that Z seems reasonable for the space group, that the Rho value (density) is as expected (1.1 to 1.4 for organic molecules, higher for inorganic compounds).
 - 1.2. Check that the Non-H atomic volume is around 16 to 20.

Significant variation from the expected values may indicate an incorrect molecular formula (perhaps caused by an unexpected solvent, or crystallographic symmetry within the molecule).

- 2. If necessary, update the formula or Z units by typing directly in the field(s) and clicking the appropriate buttons at the top of the plug-in.
- 3. Click Next.

The plug-in proceeds to the "Set Up Files" tab.

8.1.7 Set Up the Output File

- 1. If you want to change the output file name, type the new name in the "Instruction File:" field.
- 2. If you do not want to create an .hkl file (or overwrite an existing one), deactivate the **Create .hkl File** checkbox (it is activated by default).
- 3. Click Write Instruction File.

The plug-in fills in the appropriate commands for the .ins file.

Figure 8.8 — "Set Up Files" tab (filled in)

Setup / Lattice Exceptions / Space Group	Determination / Statisti	cs / Unit Cell Contents	s V Set Up Files V (Cell Information	Diagnostics			
Instruction File:	YLIDMO				Create .hkl File			
TITL YLIDHO in P2(1)2(1)(21) CELL 0.71073 5.96540 9.04230 ZERR 4.00 0.0010 10010 LATT -1 57010 5.9640 9.04230 SYMM 0.5-X, -7, 0.5+2 57010 5.9010 10010 SYMM 0.5-X, -7, 0.5+2 57010 5.9010 10010 STMM 0.5-X, -7, 0.5+7, -2 5740 5.9011 44.04 THE 23.000 0.500 5.50 11747 11747 HELF 4 END 5.901 5.901 11747) 18.39420 90.00 0.00020 0.00	00 90.0000 90.0	0000					
						Write Instruction File		Accept
							Shart Ower	

4. Click **Accept** to write the .ins file.

8.1.8 Examine Cell Information

Click the "Cell Information" tab to examine additional cell information.

NOTE: The transformation matrix could be particularly useful for twins when switching from an HKLF 4 file (that went through XPREP and was transformed to fulfill IUCr requirements of the space group) to an HKLF 5 file.

Current Dataset: YUDM		auon n Statistics n Onit	Cell Contents to Set op Tiles ty Co		indgrifostics 1			
,	a	b	с	alpha		beta	gamma	
Current Cell	5.96500	9.04200	18.39400	90		90	90	Cell Volume: 992.20
Cell esds	6e-05	0.00010	0.00019	0		0	0	
-Niggli Form:								
a.a		b.b		C.C				
35.59		81.76		338.35				
b.c		a.c		a.b				
0.00		0.00		0.00				
Vatrix:								
1	2 3							
1 1.0000	0.0000	0.0000						
2 0.0000	1.0000	0.0000						
3 0.0000	0.0000	1.0000						
ransformation from origin	al cell (HKI E-matrix):							
			Crystal Sy	/stem:	Orthorhombic		_	
1 1,000	0 0000	0.0000	Laue		mmm	3		
2 0.0000	1.0000	0.0000	Lattice:		Р			
3 0.0000	0.0000	1.0000			Domonius ()		-	
			Space Gi	oup	P2(1)2(1)2(1)	# 19	chiral	
Form: Von-H Atomic Volume(A'	Na: [C11 H10 02 S 3): [17.7		Formula Weight: 206.26 Z: 4.00		Absorption C	Densty(g/cm^3) 1381 Coefficient (Mu[mm-1]): [0.29		Wavelength: [0.7107] F(000): [432.00
								Start Over Exit

Figure 8.9 — "Cell Information" tab

8.1.9 Examine Diagnostics

Click the "Diagnostics" tab to examine additional diagnostic information.

Figure 8.10 — "Diagnostics" tab ("# Data Points" Section shown)

8.1.10 Exit the Space Groups and Statistics Plug-in

Click the Exit button in the plug-in's lower right-hand corner.

The plug-in closes.

8.2 Determining the Space Group with XPREP

- Under the Task Bar's "Examine Data" category, click the Analyze Data icon The plug-in starts, and the "Select Files for XPrep" window opens.
- 2. Check that the two files in the "Select Files for XPrep" window are correct for your data set (Figure 8.11) and click **OK**.

Figure 8.11 — "Select Files for XPrep" window

🐐 Select Files Fo	or XPrep	? <mark>X</mark>
P4P file: C:\fran	nes\guest\ylid\work\YLIDMO_0m.p4p	
HKL file: C:\fram	nes\guest\ylid\work\YLIDMO_0m.hkl	
	ОК	Cancel

- NOTE: In this example, the integration process has created two files: YLIDMO_0m.p4p containing the final unit cell parameters from integration and YLIDMO_0m.hkl containing the corrected intensities. Typically, these are the files to use for determining space groups, but you can browse to choose other files.
- **NOTE:** In addition to space group determination, many other features of XPREP can be accessed from the general menu. Resolution cutoff, reciprocal space plots, simulated powder patterns, and a test for merohedral twinning are very useful tools.
 - 3. Follow the program flow. Default options are automatically suggested and shown in square brackets. Make manual adjustments where necessary.

8.3 Creating Simulated Precession Images

The Synthesize Precession Images plug-in provides an undistorted view of layers of the reciprocal lattice. The plug-in generates simulated precession images by finding the appropriate pixels in a series of frames. You must specify the images to examine and the zones to calculate.

1. In the Task Bar's "Examine Data" category, click the **Synthesize Precession Images**

The Synthesize Precession Images plug-in opens.

2. Select the runs for image synthesis by clicking the **Browse** button beside the "Images from" field.

A "Select Runs" dialog opens.

- 3. Choose the sets of images that you want to use for the calculation by activating and deactivating the checkboxes. Click **OK**.
- 4. Check the default input values. Modify as needed (decimal values such as "0.5kl" are also allowed), and click **Calculate**.

Calculating more zones does not significantly increase the calculation time. Reducing the resolution may speed the calculations slightly. The thickness defines the range of pixels above and below the requested range. For example, if the 0kl zone is requested with a thickness of 0.1, then the simulation will use all pixels that have -0.1 < h < 0.1, and any value (including fractional values) for k and l.

A progress bar appears (Figure 8.12).

Figure 8.12 — Progress bar

Processing 1945 image files
40%
Cancel

After a short time (depending on the speed of the computer and the number of frames read), the simulated precession image will appear on the screen. The calculated frames are written to a "\precession" subdirectory in the sample's folder.

5. Display other planes by clicking on the calculated images in the bottom right of the Task Display Area, or by browsing as usual with the View Images plug-in.

6. Use the simulated patterns to check space group symmetry (Figure 8.13) and to find signs of twinning or incommensurate modulation (Figure 8.14).

Figure 8.13 — Example 0kl plane

Figure 8.14 — A plane from a rotationally-twinned crystal, showing the two lattices

9 Structure Solution and Refinement

The .hkl file (output by the Determine Space Group plug-in or, alternatively, XPREP) is all that is required to begin the structure solution and refinement process. The various steps of solving and refining the structure are carried out using the plug-ins in the "Find Structure" category:

- AUTOSTRUCTURE
- Solve Structure
- Refine Structure
- View Structure

9.1 Structure Solution and Refinement with AUTOSTRUCTURE

Using XT, the AUTOSTRUCTURE plug-in will automatically calculate initial phases, determine the space group of the crystal, and make preliminary atom assignments. After this solution, it will assign hydrogen atoms and perform structure refinement with XL, incorporating anisotropic parameters for thermal motion. It prepares a CIF file and presents the final results graphically in the viewer.

The only file required by AUTOSTRUCTURE is a set of reflections indexed on the cell found with the Determine Unit Cell plug-in. Any remaining information is extracted from the program database. A proposed chemical formula should be present in the Describe plug-in.

9.1.1 Set Up AUTOSTRUCTURE

 In the Task Bar's "Find Structure" category, click the AUTOSTRUCTURE icon The AUTOSTRUCTURE plug-in opens.

Figure 9.1 — AUTOSTRUCTURE (ready to start)

Hpd. Reflection Rie (finmer Und Vid 20131104/work/yid, 8x, 0n144) PuP File dom diabase> Induction Rie (Fomula 2 Output Soarce Group R1 wR2
Start
Stop.

2. In the "Input" area, the "Reflection File" field is populated with the most recent .hkl file. If

you want to use another .hkl file, click the Open File icon 💌 .

If present, an instruction file will load with the .hkl file. If absent, all of the necessary parameters will be extracted from the database.The chemical formula and Z can be changed as necessary by clicking in the appropriate fields.
9.1.2 Automatically Solving and Refining the Structure

1. Click Start.

The **Stop** button becomes enabled, and AUTOSTRUCTURE begins solving and refining the structure.

As structure solution proceeds, the "Output" area displays the results, including the space group, formula, Z, R1, and wR2.

NOTE: Clicking **Stop** will not stop the auto-solution immediately; the process will stop after the display's next update.

When the auto-solution process is finished, the final model will appear in the 3D view.

Figure 9.2 — AUTOSTRUCTURE (completed refinement)

- 2. If desired, manipulate the molecule's 3D model in the view:
 - Left-click and drag the mouse to rotate the molecule;
 - Middle-click and drag the mouse to "pan" the image;
 - Right-click and drag to zoom in or out;
 - Use the mouse wheel to change the label size.
- 3. If desired, right-click on any of the atoms to explore the environment around the atom. Select buttons are available to facilitate exploration of the structure (Figure 9.3).

Figure 9.3 — Structure view buttons

Button	Function	Button	Function
ID,	Take a screenshot	0-0	Visualize as ball-and-stick
đø	Toggle between orthographic and central perspective projection		Toggle ADPs
123	Complete the molecules	Þ .	Toggle bonds
₽°	Toggle Q-peak bonds	•	Toggle atom labels
₩	Hide hydrogen atoms	a D	Toggle unit cell
�	Toggle atoms	98-9	Toggle H-bonds
^	Visualize as tubes	ø	Atom styles

Additional changes to the structure may be completed in the Refine Structure plug-in.

4. To close the plug-in, click the **Close** button 🗙 in the upper right-hand corner.

9.2 Solving the Structure with the Solve Structure Plug-in

1. In the Task Bar's "Find Structure" category, click the Solve Structure icon

The Solve Structure plug-in opens. It contains tabbed sections for viewing the instructions file, listing file, results file, and a 3D model of the structure.

The plug-in automatically reads in a previously-generated .hkl file and information from the corresponding .ins and .p4p files that may be found in the "/work" folder.

Figure 9.4 — Solve Structure plug-in: initial view

Instructions Listing Results Structure View	5	Solve Refine	
	1	Input]
		Reflection File	
1 TITL Ylid 20110511_0m in P2(1)2(1) 2 CRLL 0 71073 5 96010 9 03720 18 39250 90 0000 90 0000 90 0000			
3 ZERR 4.00 0.00020 0.00040 0.00080 0.0000 0.0000 0.0000		P4P File YLII	DMO.p4p
4 LATT -1 5 SYMM x,-y,-z		Instruction File YLII	DMO.ins
6 SYMM -x, y, -z 7 SYMM -x -y z		Fomula C11	H1002S Z 4 🜩
8 SFAC C H O S			
10 TEMP 23.000			
11 12 HKLF 4			
13 END			
		Method	
		- Metriou	
		Intrinsic Phasing	Intrinsic Phasing 1
			a= 5.96Å, α=90.00°, V=991Å ³ b= 9.04Å β=90.00° P2(1)2(1)2(1)
			c=18.39Å, γ=90.00°
			Patterson Symmetry Original
			Chiraity Any
			Save Patterson Symmetry as Unit Cell
			Please integrate after solve if Unit Cell changed.
		O Direct	Direct 1
		O Dual Space	Dual Space 1
			Patterson 1
Reflections 8240 R(int) [%] 1.92 Unique 1449 Observed [%] 97			
Rejected 0 R(sigma) [%] 1.39 Observed 1402 Observed [%] 99			
Statistice Output Summany			Solve Structure

- 2. The chemical formula (from the .ins file, or alternatively from the Describe plug-in) and Z are displayed in the "Input" area and can be modified if necessary.
- **NOTE:** It is not necessary to have a .p4p file to solve a structure.
- **NOTE:** The Intrinsic Phasing method does not necessarily require either an .ins or a .p4p file. It can run with an .hkl file and the unit cell and Bravais type information in the database.

An HKL data summary is show n in the "Statistics" field at the bottom of the screen. This feedback may help you in choosing the correct structure solution method.

3. Select one of the structure solution methods from the "Method" area.

There are four main methods to choose from (however, Patterson is not available in the absence of a heavy atom with Z < 11).

Intrinsic Phasing:

This is the default structure solution method. The underlying program is called XT.

It does not require an accurate chemical formula, as it only takes atom types into account for the final element assignment. The solution of the phase problem is not negatively affected by the formula (unlike Direct methods). The algorithm even automatically adds heavy atoms if these were missing in the formula.

As mentioned above, it is not necessary to create an .ins file in order to run the program. It only requires the unit cell information and the Laue symmetry to work, which is directly taken from the data base in the absence of an instruction file.

The space group information in the instruction file will be ignored by the program. The space group assignment within the Laue group limits is part of the structure solution process.

There are additional options, which may help to solve a structure successfully:

- Intrinsic Phasing 2 forces the program to look more thoroughly for possible space groups.
- If the structure does not solve in the given Laue symmetry, it is also possible to pick a different unit cell (see the "Determining the Unit Cell" Section) from the unit cell combo box.

Alternatively, it is possible to modify the Patterson symmetry in the drop down menu. All lower symmetrical Patterson classes are available so that the symmetry can be gradually lowered for the structure solution attempts.

A modified unit cell can be saved to the database via the **Save Patterson Symmetry as Unit Cell** button. This facilitates the re-integration of the data, which is strongly recommended in these cases.

 It is possible to limit the space group selection to chiral or non-centrosymmetric cases, if there is prior trustworthy knowledge about the compound via the "Chirality:" selection box.

Direct Methods:

Structure solution using the direct methods (TREF) algorithm of XS.

In addition to the standard settings (Direct 1), you can run more solution cycles (Direct 2) or add more advanced options using Direct 3.

The chemical formula should be correct, because missing heavy atoms or extra heavy atoms for light atom structures normally lead to a failed structure solution.

Dual Space:

The program XM is used to solve the structure. It requires special settings in the ins file, which are automatically set by APEX3 based on the given chemical formula.

The number of solution attempts can be selected via Dual Space 1 (100 cycles), Dual Space 2 (200) or Dual Space 3 (infinite; the best solution is displayed after the **Stop after Iteration** button is clicked).

Patterson:

Structure solution using the Patterson method (PATT) of XS. This method identifies heavy atoms in the asymmetric unit. In combination with the "Expand" option (TEXP command), light atom positions are shown as residuals (Q peaks).

Patterson 2 provokes a more exhaustive search.

4. Click **Solve Structure** to start the structure solution calculations (the button changes to **Stop After Iteration** if you want to stop the structure solution early).

You can see output from the underlying programs in the "Output" tab at the bottom of the screen during the structure solution process.

When the solution is complete, the "Structure View" tab displays the result (for further details about the "Structure View" controls, see Section 9.3). Along the bottom, the "Summary" tab shows the output (depending on the method used).

If Intrinsic Phasing is used, the space group, R1, and the alpha value are shown. If the program found multiple possible space groups, the best solution is picked, and the others are available from the space group combo box in the "Summary" tab.

The intrinsic phasing solutions are called "<name>_a(/b/c/...).res". An individual .hkl file is created for each .res, so that the refinement can be easily started on all solutions.

The selected solution is renamed to "<name>.res" for further processing.

Figure 9.5 — Solve Structure plug-in output

Instructions Listing Results Structure View	Solve Refine
	Input Reflection File YLIDMO.hld P4P File YLIDMO.p4p Instruction File YLIDMO.ins Fermula C11H1002S Z
	Mathod Internac Phasing I Internac Phasing I Inte
[e] P2(1)2(1)2(1) ▼ R1[%] E.50 alpha 0.001	
Statistics Output Summary	Solve Structure

NOTE: Previous solutions' .ins, .hkl, and .res files are automatically saved to a "History" folder in the "\work" directory, if the **Solve Structure** button is clicked again.

9.3 Refining the Structure in the Solve Structure Plug-in

The Solve Structure plug-in's "Refine" tab offers several options for refining the solved structure using XP, XL, or XShell. After refinement, an updated R1 value appears at the bottom in the "Summary" tab.

Simply verify that the "Base:" field contains the correct name for the project you wish to refine. Then, click one of the buttons at the bottom to begin refinement.

Table 9.1 — "Refine" tab

Control		Description
Input	Base	This is the base name of the project to use.
	Refresh Files	Refresh the tabs using the absolute latest contents of all of the files.
	Copy RES to INS	Clicking this button copies the contents of the results file into the instructions file.
	Save Files	Save any changes that you have made to the files.
	Refine with XL	Refine the instruction file using XL.
Buttons	Open in XP	Edit the results file using XP.
	Open in Olex2	This button appears if Olex2 is installed on the PC and the installation directory is mentioned in the Windows path variables.
	Open in XShell	Open the selected file in XShell.
	Browse For Base	Click on this button to select a file to retrieve the base from.
	Base Name	This is the base name of the project to use.

9.4 Refining the Structure using the Refine Structure Plug-in

The Refine Structure plug-in provides a user-friendly graphical user interface for the crystal structure refinement program XL. It is based on the ShelXle engine, which combines state-of-the-art graphics with a sophisticated editor for the instruction file. This makes the plug-in appealing both to beginners, who value the intuitive operation of the plug-in, and experts who have all of XL's advanced features at hand.

The Refine Structure plug-in only requires a reflection intensity file (.hkl) and a corresponding XL instruction (.ins) or results (.res) file.

9.4.1 The Refine Structure Plug-in's User Interface

In the Task Bar's "Find Structure" category, click the Refine Structure icon

The Refine Structure plug-in opens.

On opening the Refine Structure plug-in, all fields are populated with the most recent .res file. If you

want to use another .hkl file, click the Open File icon 🃁

The plug-in is divided into an interactive structure viewer (left), a text area (right), and tool bars (top; Figure 9.7).

Figure 9.7 — Initial view

9.4.1.1 The Structure Viewer

The model in the structure viewer can be manipulated by using the mouse:

- Left-click and drag the mouse to rotate the molecule;
- Middle-click and drag the mouse to "pan" the image;
- Right-click and drag to zoom in or out;
- Use the mouse wheel to change the label size.

A left click on any atom selects the atom and the text cursor automatically goes (word?) to the corresponding line in the instruction editor on the right. Further details about the atom environment will be shown in the Information Window tab at the bottom right.

The distance between two atoms is shown in the Information window, if you consecutively click on two atoms. The angle between three or the torsion angle between four atoms are calculated once they are clicked in a row (Figure 9.8).

```
Figure 9.8 — Information window
```

	\mathbb{C}^{1}
H7C11C9	121.44° 1,3 Distance(DANG) 2.034 A
H7C11C9C9	0.00*
H6 part: 0 residue: 0 (fi	ragment 1)
H6C11	2.016 Å DMSDA: 1.83e-03 Å ²
H6C11H7	97.68° 1,3 Distance(DANG) 2.330 Å
H6C11H7C11	0.00*
C10 part 0 residue: 0 C10H6 C10H6C11 C10H6C11H7	(fragment: 1) 0.930 ŠDMSDA: 0.00e+00 Ų 37.10° 1,3 Distance(DANG) 1.392 Å -179.87°
C11 part 0 residue: 0 (C11C10 C11C10H6 C11C10H6C11	(fragment 1) 1.392 Å DMSDA: 3.91e-03 Å ² 119.13° 1,3 Distance(DANG) 2.016 Å 0.00°
Information Window	Refinement History

The [Shift] key can be used to select multiple atoms at a time. Selecting one atom and then [Shift]+clicking on another atom selects all atoms between the two atom positions in the instruction file.

Right-clicking on an atom opens a dialog window (Figure 9.9) in which further options can be selected, including hiding atoms and fragments, expanding the structure, deleting atoms, ENVI information, changing scattering factors, and adding restraints and constraints.

Figure 9.9 — Right-click menu

Residual electron density peaks are represented as small spheres in the structure model viewer. The color corresponds to the height of the Q peak shown in the color scale on the right-hand side of the structure viewer. Clicking on the scale allows you to define a Q peak visibility threshold. This selection can be reverted by clicking at the bottom of the scale.

9.4.1.2 The Text Area

The text area is separated into two text fields. The top field shows the instruction/results (.res), the listing file (.lst), or the Checkcif report depending on which tab is activated. Below, you can find the Information window and the Refinement history. These two fields can also be separated by dragging the box to another spot on the GUI.

The text editor is showing the results file, but the plug-in will automatically create an instruction file when the refinement button is pressed, so it is no longer necessary to copy .res to .ins. The editor highlights any recognized XL command in green and makes auto-completion suggestions if XL commands are recognized. Hovering the mouse pointer over any command reveals syntax tool tips. Furthermore, AFIX and PART sections are automatically marked at the beginning of a line (Figure 9.10).

Figure 9.10 — Text editor: AFIX and PART highlighting

Т	AFIX	137				
н	H8	2	0.914104	0.102039	0.315245	11.00000
н	Н9	2	0.916614	0.081870	0.230593	11.00000
н	Hl	2	0.688476	0.079146	0.272949	11.00000
н	AFIX	0				
	C2	1	0.636132	0.375835	0.327840	11.00000
			0.03337 ·	-0.00327 0	.00360 -0.	00176
	C3	1	0.432958	0.304551	0.350172	11.00000
			0.03790 ·	-0.00012 -0	.00043 0.	00143
	PART	1				
	C4	1	0.357797	0.385845	0.417549	11.00000
			0.03337	0.00370 0	.00278 0.	00716
	C5	1	0.177172	0.359528	0.461841	11.00000
			0.04846	0.00392 0	.00831 0.	00471

The "LIST FIL:" tab is showing the list file at exactly the same line that was displayed before. Therefore, it is not necessary to scroll to a certain line of interest after new refinement cycles.

The "Refinement History" tab shows R1 bars for each started refinement turn. The color reflects the refinement results. The greener the bar, the better the R value. It is possible to revert to a previous instruction file by clicking on any of the bars.

9.4.1.3 The Tool Bar

The control buttons at the top of the plug-in provide a variety of options that support you in refining your structure. Table 9.2 shows an overview.

Control	Function
i i i i i i i i i i i i i i i i i i i	Open structure
*	Close structure
	Take (POV-Ray) screen shot
1	Hide text windows
₽₽	Toggle orthographic/perspective view
200	Grow/fuse
No	Rename mode
Q	Draw Q peak bonds
₩∕	Toggle hydrogen atoms
	Undo
7	Redo
a	Cut
	Сору
	Paste
D	Find in text
Q	Delete all Q peaks
H	Delete all hydrogen atoms
10	Insert ANIS and run refinement
V	Run CIF check
A	Increase font size
A	Decrease font size

Control	Function
¢,	Configure atom styles
	Configure map styles
•	Toggle atoms
\wedge	Tube model
1	Run refinement
—	Ball-and-stick model
	Toggle ADPs
>	Toggle bonds
S	Toggle atom labels
ac	Toggle unit cell
@@-@	Toggle H bonds
Fobs	Toggle F _O map
Fo-Fc	Toggle F _O - F _C map
×	Deselect atoms
\$	Create centroid
***	Center selected atom(s)
	Invert selection
\$	Hide other atoms
₩	Hide hydrogen atoms
*2	Delete selected atoms
0	Show all hidden atoms

9.4.2 Refine the Structure

The model should be fairly complete if the AUTOSTRUCTURE plug-in or the intrinsic phasing option of the Solve Structure plug-in was used.

- 1. Inspect the model carefully, and delete extra atoms or change atom types that are not chemically sensible:
 - You can delete an atom by right-clicking on the atom and choosing **Delete** atom name. Alternatively, you can select one or more atoms and click the

The best way to change the atom type is to use the renaming mode which

can be activated by clicking the **Rename mode** button \bigcirc . The text window will show the "Rename Mode" window (Figure 9.11), from which you can choose atom types that were assigned during structure solution from the "Scattering factors:" box) or any chemical element by clicking the **more scattering factors** button. You can select a label number and suffix, and then simply click on the atom to rename it in the structure viewer.

Figure 9.11 — "Rename Mode" window

rou ar	e în 'rename mode' now.	
Hint Hint It is Saving sync Before you SAVE! <u>Cli</u>	wise to save often. Especially after renaming a couple of Q-Peak hronizes the visualized structure and the editor content. start renaming and after you are finished renaming you should ck here to hide this hint for ever.	S.
Part: 0 🚔	Residue Nr: 0 🚖 Residue Class:	
Number	12 Suffix	
Automatical	y jump to first unused label 🛛 Increment Suffix	
Next La C12	bel is:	
) any ()	H ●C ○O ○S	

Each non-hydrogen atom needs to get a unique name (unless it is in a different residue or part). Activate the Automatically jump to first unused label checkbox to avoid duplicate atom names in the structure. Duplicates will be highlighted immediately. You can also convert residual electron density ("Q") peaks into atoms by simply renaming them.

When you are finished modifying the model, click on the refinement icon 🖊 or press 2 [F2] to start the least-squares refinement.

The text panel automatically reports the results, and the output files of the refinement (.ins, .res, .lst, .fcf) are saved to the "\work" folder. You can accept the refinement results by clicking the Load refinement results button or pressing the space bar (if the focus wasn't taken from the Load refinement results button). If the results are not satisfactory, you can discard the refinement results by clicking **Discard results**.

- 3. Continue modifying and refining the model until all non-hydrogen atoms are correctly assigned.
- Next, click on the anisotropic refinement button *P* and check for any unusually large, 4. small, or elongated anisotropic displacement parameters (ADPs). These could, for example, point to incorrectly-assigned atom types or disorder in the crystal.
- 5. Afterwards, missing hydrogen atoms have to be added. There are three options to achieve that:
 - Select ShelX > Automatic HFIX. Corresponding HFIX commands for all C,N, and O atoms are derived from connectivity and bond length, and are automatically inserted into the .ins file.
 - Manually add HFIX/AFIX commands to the .ins file.
 - Assign Q peaks to hydrogen atoms.
- 6. As soon as the structure model is complete, the weighting scheme should be adjusted. Choose ShelX > Try To Refine Until WGHT converges (Max 10 Runs).

APEX3 automatically tries to refine the weighting scheme until convergence.

Finally, carefully check the listing file for warnings, indicators for extinction, or 7. disagreeable reflections, and address them if required.

9.4.3 Finish the Refinement

In order to finish the refinement:

- 1. Choose **SheIX > Weed Unused SFAC Numbers** to remove atom types from the scattering factor card that were not present in the structure.
- 2. Choose ShelX > Update UNIT Instruction.
- 3. Adjust the ZERR command to the correct number of formula units per unit cell.
- 4. Change the LIST command (if present in the .res file) in the .ins to "LIST 4".
- 5. Add an ACTA command to the .ins (if not already present), and CONF if you want to get torsion angles calculated in the .cif file.
- 6. Check that the sample temperature is correct (TEMP; unit is °C) and add the crystal size (SIZE, unit is mm).
- 7. You can sort the atom list via SheIX > Sort Atoms In File. Multiple sort methods can be selected from SheIX > Change Sort Order....
- 8. Select ShelX > Try To Refine Until WGHT converges (Max 10 Runs).
- 9. Click the **CIF Check** button to open a checkCIF report. Carefully check the report and address issues (i.e., repeat the above steps after the model changes).

Please note that the XL .cif file always lacks some information about the sample (e.g, the space group). Ignore warning messages about these entries; they will be addressed during report generation.

The final refinement files (.cif, .res, .ins, .lst, .fcf) can be found in the "\work" folder.

This page intentionally left blank.

10 Using the Generate Report Plug-in

10.1 Preparing for Report Generation

Before creating the report, make sure that your last results file (.res) has the correct values for the final structure:

- Correct formula (SFAC and UNIT instructions)
- Correct Z value (ZERR instruction)
- Final cell constants with ESDs (from the final *_0m.p4p file)
- Correct atom sorting and labelling
- TEMP instruction (in °C) (e.g., TEMP -173 for 100K)
- SIZE instruction
- ACTA instruction
- BOND \$H instruction
- CONF instruction for torsion angles (if applicable)
- HTAB instructions for specific hydrogen bonds (if applicable)
- **NOTE:** You may need to edit the instructions file to add one or more of these instructions or parameters. If so, please do another refinement cycle within APEX3 to generate the *.cif file.

10.2 Starting the Plug-in

In the Task Bar's "Report" category, click the Generate Report icon

The Generate Report plug-in opens, retrieves your project's data, and populates the report based on the default template.

Figure 10.1	—Generate	Report	plug-in:	initial	view
-------------	-----------	--------	----------	---------	------

Constant of Access of Bond lengths of Bond lengtes of Tostoria	nges u hydrogen bonds u Authors u Miscel	aneous (-	Terrolata Eda
	Crystal Structure	Report for ylid			÷.	C. \bn\urc\vecort\apes2.zip
A yellow sphere-like specimen of C11HH002S, approximate dimension	is 0.500 mm x 0.500 mm x 0.500 mm, was used for th	he⊠say crystallographic analysis. The≯	ray intensity data were measured	1		Template Sections:
Table 1: Data collection details for vi	id.					Run list
Avie dy/mm 28/* 4/* m/	" v/" Width/" Frames	Time/s Wavelength/Å	Voltage/kV Curr	ent/må Temperature/K		 Structure view (in saved report only) Packing view (in saved report only)
Phi 60.000 35.00 242.50 152.86	54.74 0.50 426	10.00 0.71073	50 30.0	296	111	Sample and crystal data
Omega 60.000 -32.50 157.44 280.00 Omega 60.000 10.00 172.50 205.00	54.74 0.50 351 54.74 0.50 429	10.00 0.71073	50 30.0	296		Atomic coordinates
Phi 60.000 35.00 30.00 0.00	54.74 0.50 739	10.00 0.71073	50 30.0	296		Bond lengths Bond angles
A total of 1945 frames were collected. The total exposure time was 5 unit cell vielded a total of 8228 reflections to a maximum 8 ande of 2	5.40 hours. The frames were integrated with the Brui 25.05* ID 84 Å resolution) of which 1746 were independent.	ker SAINT software package using a ni endert (average redundancy 5022, co	mow-frame algorithm. The integra	tion of the data using an orthorhombic Rev = 1.432(Land 1704 (97.592))		Torsion angles Anisotropic displacement parameters
were greater than $2\sigma(F^2)$. The final cell constants of $a = 5.9619(5)$ Å	<u>b</u> = 9.0208[7] Å, <u>c</u> = 18.3539(14) Å, volume = 987	08(12) Å ³ , are based upon the refineme	nt of the XYZ centroids of 6015 re	effections above 20 $\sigma(I)$ with 6.333* <		Hydrogen atomic coordinates
[20] Sun 31, Data were corrected for absorption effects using the Mi [based on crystal size] are 0.8660 and 0.8660.	ub-Scan method (SAUABS). The ratio of minimum to	o maximum apparent transmission was U	531. The calculated minimum and	d maximum transmission coefficients		Hydrogen bonds
The final anisotropic full-matrix least-transvers refinement on P2 with 12	29 variables converged at B1 = 2.50% for the obser	event data and $wB2 = B \frac{490}{490}$ for all data	The goodpess-of-ft was 0.784. T	be largest neak in the final difference		
electron density synthesis was 0.173 er/Å2 and the largest hole was	-0.202 er/Å ² with an RMS deviation of 0.034 er/Å ² .	On the basic of the final model, the calc	ulated density was 1.388 g/cm ² a	and F(000), 432 er.	1	
Table 2. Sample and crystal data for y	/lid.					
Identification code	ylid					
Chemical formula Formula weight	C11H1002S 206.25 a/mol					
Temperature	296(2) K					
Wavelength	0.71073 Å 0.500 = 0.520 = 0.500 mm					
Crystal habit	yellow sphere					
Crystal system	orthorhombic					
Space group Unit cell dimensions	P2[1]2[1]2[1] a = 5.9619[5]Å	a = 90°				
	b = 9.0208(7)Å	$\beta = 90^{\circ}$				
Volume	c = 18.3533[14] A 987.080121 Å	γ = 30°				
z	4					
Density (calculated) Absorption coefficient	1.388 g/cm ³					
F(000)	432					
Table 3. Data collection and structure	refinement for vlid.					
Theta range for data collection	2.22 to 25.06'					
Index ranges	-7c=hc=6, -10c=kc=10, -21c=kc=21					
Reflections collected	8778 1746 (Blint) = 0.02081					
Coverage of independent reflections	39.7%					Save Report
Absorption correction	Multi-Scan				÷	Deep Report in Data & Application
Max. and min. transmission	0.0000 and 0.0000				Ľ	Upen Report in Deraut Application

10.3 Choosing a Template File

To change the formatting for your report, you can choose a template on which your report will be based. Template files are contained in the directory "C:\bn\src\report".

In the right-hand section of the plug-in, use the drop-down menu to find the desired template file:

- Choose "apex2.zip" to format the report as HTML output from the plug-in, without instrument-specific text.
- Choose x2s.zip to format the report with SMART X2S-specific text and data.
- Choose acta.cif to format the report as a .cif file for submission to *Acta Crystallographica*.
- Use **Browse...** to locate another template if available.

10.4 Creating an HTML-Formatted Report for Online or Print Distribution

To format your report as HTML, simply choose "C:\bn\src\report\apex2.zip" in the **Template File:** drop-down menu.

Bruker's report format is an HTML file, along with necessary Java files to display the structure using the free structure viewer JSmol. The report may be viewed on any computer with Java and a web browser (Mozilla Firefox recommended). The HTML file may also be opened in Microsoft Word or other word-processing programs to produce printed manuscripts.

The report is shown in the "Report" tab. Additional tabs are available for specific details. It is possible to select specific bond lengths, bond angles, and torsion angles from the corresponding tabs by activating the checkboxes.

Before saving the report, add any additional information (e.g., information from your .cif file, your run lists, your contact information) to the report (for details, see Section 10.6).

1. In the lower right-hand corner, click the **Save Report...** button.

The "Save Your Report..." dialog opens.

Figure 10.2 — "Save Your Report..." dialog

🤯 Save Your Report		? 💌
Look in: 🛛 🔒 C:\frames	\guest\ylid 🔹 🗘 🕤 🕥	📑 🎛
My Computer	Teport.	
Directory: report		<u>C</u> hoose
Files of type: Directories	v	Cancel

- 2. Choose the desired directory for your report (there is no file name to type in; the final report will be named "report.html", located in the chosen folder with the other required files).
- **NOTE:** A "report" folder is automatically created in the work directory once the "Save Your Report..." window opens.
 - 3. Click OK.

The report and additional files are saved to the specified directory (which takes a few seconds; please do not move the folder before all files are present).

10.5 Creating a Report for Submission to Acta Crystallographica

To format your report as a .cif file for *Acta Crystallographica*, simply choose "C:\bn\src\report\acta.cif" in the **Template File:** drop-down menu.

Before saving the report, add any additional information (e.g., information from your .cif file, your run lists, your contact information) to the report (for details, see Section 10.6).

NOTE: If you need information from the .cif file generated by XL outside of the APEX Suite, you will need to import it regardless of whether you have already created an HTML-formatted report.

Figure 10.3 —CIF report initial view

<pre>meta_gradual</pre>	Report V Atoms V Bond lengths V Bond angles V	Torsion angles V Hydrogen bonds V Authors V Miscellaneous V		
Joshi rescience mathine 'JBCD v2011.F=CC' Jubi rescience mathine mathine 7 Jubi rescience mathine 7	data global		-	Template File:
jubi_requested_journal ? jubi_requested_journal ? jubi_requested_journal ? jubi_requested_state ? </th <td>_audit_creation_method</td> <td>'APEX3 v2015.5-RC5'</td> <td>П</td> <td>C.\bn\src\report\acta.cif</td>	_audit_creation_method	'APEX3 v2015.5-RC5'	П	C.\bn\src\report\acta.cif
pbb.grosser.grobur_gass ? pbb.grosser.grobur_gas1 ? pbb.grosser.grobur_gas2 ?	_publ_requested_journal	?		Tomoloto Continent
	and a second second second		111	Tempiale Secuoris:
<pre>1 . cross _ mother _ fait _ ;</pre>	publ_contact_author_make	7	555	No sections available.
<pre> jub. contact_action_reat</pre>	, and construct and construction			
jubi_contact_entbor_fac_ jubi_contact_entbor_f	1			
jubi_gronz_methory_fine jubi_gronz_methory_bine jubi_gronz_methory_bine jubi_gronz_methory_bine jubi_gronz_methory_bine jubi_gronz_methory_bine jubi_gronz_methory_bine jubi_gronz_methory_bine jubi_gronz_methory_bine jubi_gronz_methory_bine jubi_gronz_methory_bine ibbined_contents_methory_bine ibbined_formal_topication 	_publ_contact_author_email	7	Щ.	
whi whi whi	_publ_contact_author_fax	2		
publication_state publication_retares publication	_publ_contact_author_phone	2		
<pre>public desting betract: public desting betract: public desting restances public desting restances public desting restances public desting restances public desting restances public desting restances public desting restances desting restances</pre>	publ section title			
<pre></pre>	7			
	·			
<pre> juin_section_references j juin_section_comment j descal_comment descal_com</pre>	juni_second_assocated			
	1			
<pre>pidl_section_commant j: desc_jidd_section_commant desc_jidd_secti</pre>	_publ_section_references			
jubi_jection_consent ; chanical_ans_consent chanical_ans_consent chanical_ans_consent chanical_ans_consent chanical_formula_mas chanical_formula_ma	3			
<pre> / / / / / / / / / / / / /</pre>	_publ_section_comment			
* deta_y1id _chanical_name_orgeneration _chanical_orgenuits_nume _chanical_orgenuits_nume _chanical_orgenuits_nume _chanical_orgenuits_nume _chanical_orgenuits_nume _chanical_orgenuits_nume _chanical_absolute_configuration 	2			
deta yitd - -besical_name_oreanon yitd -chemical_formula_make_yit - -chemical_system - -pace_group_make_Rial - -pace_group_make_Rial - -chal_sostem - -chal_sostem - -chal_sostem - -chal_sostem - -chal_sostem </th <td>·</td> <td></td> <td></td> <td></td>	·			
<pre></pre>	data ylid			
<pre></pre>	_chemical_name_systematic	2		
	_chemical_name_common	ylid		
<pre>cheateal_formula_type cheateal_formula_type cheateal_formula_</pre>	_chemical_formula_moiety	7		
	_chemical_formula_sum	C11 H10 02 3		
<pre></pre>	_chemical_formula_tupac	1 1 05 05		
<pre></pre>	chemical absolute configuration	200-20		
	_chemical_melting_point	3		
prec_group_nase_Mt_alc P2(1)2(1) _prec_group_nase_Mt_alc 'P fac fab' log_ prec_group_symes_peration_sym	_space_group_crystal_system	orthorhombic		
prec_group_mas_Mail 'P isc isb' lonspec_group_operation_sym spec_group_operation_sym spec_group_operation_sym stl/2retA/2 st	_space_group_name_H-M_alt	P2(1)2(1)2(1)		
100p	_space_group_name_Hall	'P Zac Zab'		
- yrs	loop_			
ivi/zyvi/zs -st/zyvi/zst/z -st/zst/zst/z -st/zst/zst/zst/z -st/zst/zst/zst/z -st/zst/zst/zst/z -st/zst/zst/zst/zst/z -st/zst/zst/zst/zst/z -st/zst/zst/zst/zst/z -st/zst/zst/zst/z	x.v.z			
-x,yi/2,-si/2 -xi/2,-yi/2,-si/2 _cell_length_a	x+1/2,-y+1/2,-z			
-x41/2,-v,z41/2 _cell_length_a 5.9619(5) _cell_length_b 9.0208(7) _cell_length_c 18.3593(14) _cell_angle_beta 90 _cell_besauresset_beta 90 _cell_besauresset_beta_sax 20 _cell_besauresset_beta_sax 25.00/4 _cell_besauresset_beta_sax 25.00/4 _cell_besauresset_beta_sax 20.00/4 _cell_besauresset_beta_sax 20.00/4	-x,y+1/2,-s+1/2			
edil_iongh_A 5.9539(1) edil_iongh_B 5.0508(7) edil_iongh_B 6.0539(14) edil_angle_stan 90 edil_ansaturestand_tota_stank 50 edil_ansaturest_tota_stank 25.0094 edil_ansaturest_tota_stank 25.6204	-x+1/2,-y,z+1/2			
cell_longh_b 9.0200(7) cell_angle_longh_c 18.9597(14) cell_angle_lpha 90 cell_angle_lgena 90 cell_angle_gena 90 cell_gena 90 cell_angle_gena 90 cell_gena 90 cell_gena 90 cell_gena 90 cell_gena 90 cell_gena	cell length a	5,9619(5)		
_cell_angle_beta 18,3559(14) _cell_angle_beta 90 _cell_angle_beta 90 _cell_angle_beta 90 _cell_angle_beta 90 _cell_angle_beta 90 _cell_prosting_mains 90 _cell_persurgemains 907.00(12) _cell_pensurgemain_tota_pains 5 _cell_pensurgemain_tota_pains 5.0694 _cell_pensurgemain_tota_pains 25.0694 _cell_pensurgemains_concervance 25.6(2)	_cell_length_b	9.0208(7)		
_cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gmana 90	_cell_length_c	18.3539(14)		
_celi_angle_beta 90 _celi_gramia 90 _celi_provime 907.00120 _celi_provime 907.00120 _celi_provime 615 _celi_provime 616 _celi_provime 5800 Report. _celi_provime 2.60/4 _celi_provime 2.60/4 _celi_provime 2.60/4 _celi_provime 2.60/4	_cell_angle_alpha	90		
	_cell_angle_beta	90		
	_cell_maje_gama	70 907 00/121		
_coll_measurement_refins_used 6015 _coll_measurement_that_min 3.1666 _coll_measurement_that_max 25.0094 _coll_measurement_temperature 296.(2)	cell formula units 2	4		
cell_measurement_thete_min 3.1666 cell_measurement_thete_max 25.0094 cell_measurement_temperature 296.(2)	_cell_measurement_refins_used	6015		
_cell_measurement_theta_max 25.0694 _cell_measurement_temperature 295.(2)	_cell_measurement_theta_min	3.1666		Save Report
_cell_seasurement_temperature 295. (2)	_cell_measurement_theta_max	25.0694	A	_
	_cell_measurement_temperature	295.(2)	•	Open Report in Default Application

10.6 Adding Additional Information to the Report

To achieve a publication-quality report, you will need to add certain information to the report before saving it. This information may include:

- Information from a manually-edited .cif file
- The experiment's run list (all active runs in the Run Experiment plug-in are automatically loaded)
- Additional information (e.g., diffractometer information, name of institution, contact information, etc.)

10.6.1 Adding Information from a .CIF File

To add information from a .cif file:

- Choose Report > Import XL CIF File... from the Menu Bar. The "Import CIF File" window opens.
- Browse to the desired .cif file, and click **Open**.
 The .cif file's information is imported into the report. If information is already present in the imported fields, it is overwritten.

10.6.2 Adding the Run List

To add the run list:

1. Choose Report > Import Run List... from the Menu Bar.

A run list selection dialog appears (Figure 10.4).

Figure 10.4 — "Select Runs" dialog

👻 Select Runs		? 🔀
Look in: Look in: C:\fram	es\guest\ylid work YLIDM0_04_0724.sfrm YLIDM0_04_0723.sfrm YLIDM0_04_0723.sfrm YLIDM0_04_0723.sfrm YLIDM0_04_0721.sfrm YLIDM0_04_0727.sfrm YLIDM0_04_0727.sfrm YLIDM0_04_0725.sfrm YLIDM0_04_0719.sfrm YLIDM0_04_0735.sfrm YLIDM0_04_0718.sfrm YLIDM0	▼ ● ● ● ■ ■ ■ ■ ■ ■ ■ YLIDMO_01_##### (1 - 425) ● > ■ ▼ YLIDMO_02_##### (1 - 425) ● YLIDMO_03_##### (1 - 429) ● ▼ YLIDMO_04_##### (1 - 429) ● ■ ■ ■ ■ matrix_01_##### (1 - 30) ■
	YLIDM0_04_0733.sfrm YLIDM0_04_0716.sfrm YLIDM0_04_0732.sfrm YLIDM0_04_0715.sfrm YLIDM0_04_0731.sfrm YLIDM0_04_0714.sfrm YLIDM0_04_0730.sfrm YLIDM0_04_0713.sfrm YLIDM0_04_0729.sfrm YLIDM0_04_0712.sfrm YLIDM0_04_0728.sfrm YLIDM0_04_0711.sfrm YLIDM0_04_0728.sfrm YLIDM0_04_0711.sfrm YLIDM0_04_0726.sfrm YLIDM0_04_0709.sfrm YLIDM0_04_0725.sfrm YLIDM0_04_0708.sfrm	Select all Deselect all
Directory: Files of type: Directories		Choose

2. Browse to your project's location, choose the desired runs, and click **OK**. The run list is imported into the report.

10.6.3 Adding Additional Information

To add additional information to the report, simply choose the "Miscellaneous" or "Authors" tab and edit the information directly in the necessary fields. When you return to the "Report" tab, the new information will be updated in the report.

10.6.3.1 Importing and Exporting Additional Information

The "Miscellaneous" tab allows you to import and export report information (e.g., for generic information that is reused often, such as experiment setup and contact information).

Importing Information

To import information into the "Miscellaneous" tab:

1. Click the **Import Items...** button.

The "Import Items" dialog opens.

- 2. Browse to the .pcf file that contains the desired information.
- 3. Click Open.

The information is imported into the report. If information is already present in the imported fields, it is overwritten.

Exporting Information

To export information from the "Miscellaneous" tab:

1. Click on the fields to select them. [Ctrl]-click to select multiple items, or [Shift]-click to select a range (Figure 10.5).

Figure 10.5 —Selecting data for export

mouting structure refinement	SHELXE-2014/7 (Sheldrick 2014)	
mouting structure solution	XI VEBSION 2014/4	
frn ambient temp esd	200	
frn measurement device		-
frn radiation.monochromator		
frn radiation.type	МоК\а	
frn reflns.reduction process	narrow-frame	
frn_source.source		
try.id	ylid	
ptl.absorpt_correction_type	Multi-Scan 👻	
ptl.absorpt_process_details		
ptl_crystal.density_meas		_
fine.ls abs structure details		-
	Flack x determined using 674 quotients [(I+}-[I-]]/[[I+]+[I-]] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).	
		Export Selected Ite

2. Click the Export Selected Items... button.

The "Export Items" dialog opens.

3. Choose a directory and filename for the exported information, and click **Save** to save the information as a .pcf file.

This page intentionally left blank.

11 Appendices

11.1 SaintChart Output Reference

11.1.1 Run Selector (Top Right Combo Box)

This drop-down list contains entries for each run that is integrated, plus the initial passes that are made before each run. When the integration has finished, an additional "Integration Finished" entry is added.

Selecting an entry from this list will update the charts and graphs on the left-hand side to the corresponding run. If "Integration Finished" is selected, the global statistics for the whole data set will be displayed instead.

Entries can be selected while the integration is still in progress (it will continue running in the background).

11.1.2 Twin Component Selector

This list contains an entry for each domain of a twinned crystal and an additional entry for the combination of all domains. Selecting an entry from this list will update the charts and graphs on the left side to the corresponding domain(s).

Only the "All Components" entry will be available if data from a non-twinned crystal is integrated.

11.1.3 Chart Selector

This list, along the right-hand side of the screen, contains a checkbox for each chart or graph that is available.

A chart/graph window appears in the "Charting Area" on the left-hand side when one of the checkboxes is activated. Likewise, the window disappears when the checkbox is deactivated. Alternatively, a window can be closed by clicking the "X" symbol in the upper right-hand corner of the chart/graph window.

The various charts and graphs are grouped in the following categories:

- **Progress Statistics**: Statistics on the progress that has been made integrating the data and the estimated remaining time for each run and for the integration at large to finish.
- **Per-Image Statistics**: Charts/graphs in this group are updated with each image that is integrated.
- Periodic Statistics: Charts/graphs in this group are updated in periodic intervals when a local least squares refinement of the crystal and instrument parameters is performed.
- **Coverage Statistics**: Charts/graphs in this group contain statistics about the data set after the integration process has finished.

11.1.4 Default SaintChart Items

11.1.4.1 Spot Shape Correlation

The Spot Shape Correlation graph is the best indicator for a successful integration. It plots the degree of correlation between the measured 3D reflection profiles and the model 3D profiles computed from the strong spots.

- For well-diffracting crystals with properly-chosen exposure times, the spot shape correlation should be in the range of 0.7 or better.
- For weak diffractors, the spot shape correlation will be lower but should be at least 0.4 if the exposure time is chosen correctly.
- Correlation factors below 0.4 indicate a serious problem with the indexing, the experimental setup, or both. However, a very low spot correlation factor may occur for twins with a significant number of overlapping reflections—this is normal.

You can investigate any unusual features in the spot shape correlation by checking the images corresponding to the region of concern using the Movie Tool. To start the movie, right-click in the Image Display Area and choose **Movie**.

11.1.4.2 Average Spot Intensity and I/Sigma(I) Values

Spot intensity and I/sigma plots the average intensity and average I/sigma (intensity divided by standard deviation) for the integrated reflections on a given image.

11.1.4.3 Spot Shape Profiles by Detector Region

Spot shape profiles displays the model 3D reflection profiles in pixels for the nine regions of the detector. Holding the left mouse button down while moving the mouse enables the box to be rotated.

In general, each 3D profile should be centered in the box but the spot shapes may change from region to region. Multiple or deformed 3D profiles indicate that your choice of initial box size or indexing may be incorrect. Split spot shapes may indicate diffraction from split crystals or twins.

11.1.4.4 Average Different Between Observed and Predicted X, Y, Z

X, Y, Z error plots the average difference in pixels (X and Y) and frame number (Z) between the observed and predicted reflection positions on a given frame. These parameters are useful indicators of the plug-in's ability to track reflections.

Errors in X, Y, and Z should be small (less than 1 pixel) and should not vary during the integration of a run. Large variations indicate problems with slipping crystals, misalignment of the instrument, or other problems.

11.1.5 Non-Default SaintChart Items

Table 11.1 — Other SaintChart display outputs

Display	Description
Connected	This indicator shows whether the SAINT integration engine is running in the background.
Integration in Progress	This indicator shows whether the integration process is still in progress. This is useful, because even if no changes to the charts and graphs or to the log file can be seen, the integration engine may still be working.
Stop Integration	Clicking this button will stop the integration process.
SAINT Log File Area	This is the text output from the SAINT integration engine. It contains a textual representation of the same information as the graphical charts, plus some additional data that is not available in the charts and graphs.

11.2 Using CELL_NOW

CELL_NOW is an extremely powerful tool for determining unit cells for difficult crystals. It analyzes a list of reflections to find a cell and orientation matrix despite the presence of several twin domains or other problems.

In initial search mode, the program tries to find sets of reciprocal lattice planes that pass close to as many reflections as possible. The corresponding real space vectors are sorted on a figure of merit (1.0 being a perfect fit). After the vector list has been output, CELL_NOW attempts to suggest a suitable cell. This will not necessarily be the conventional cell, so it should be checked using XPREP.

Once a cell is found, it may be rotated to locate further twin domains iteratively using only the reflections that have not yet been indexed.

If CELL_NOW fails to suggest a sensible cell, for example something may be seriously wrong with the reflection list (e.g., a wrong detector distance) or a cell axis is longer than the given search range.

11.2.1 Running CELL_NOW on a List of Reflections

 Open a Command Prompt window in your "\work" directory by choosing Sample > Run Command....

The exported .p4p file should be available in this directory.

2. For Windows or Linux, enter the command cell_now -t.

The terminal prints out an explanation of the program, which contains more detailed information about its working principles than is found in this Section's introduction.

- 3. CELL_NOW requests the name of the input file and suggests a name for the output file. Enter the name of the input file including the file extension (for the output file, press [Enter] to accept the default).
- 4. Press [Enter] to start a general search.

Initial search (<Enter>) or specified cell search (S):

5. If the default superlattice threshold is suitable (which it normally is), press [Enter].

Superlattice threshold: an axis will be rejected if less than this percentage of reflections has indices not equal to 2n or 3n resp. [10]:

6. If the default minimum and maximum distances are acceptable, press [Enter] again.

The default range is 5 to 45 Å, which may not fit your crystal. In order to get an impression about the unit cell dimensions, you can use the **Measure Distance** tool in the "View Reciprocal Lattice" plug-in.

NOTE: Usually CELL_NOW is used to search generally for a cell, but if the cell is known, choose the specified cell option and enter the cell dimensions. CELL_NOW will then search for a matching cell. After some period of time, CELL_NOW presents a list of possible unit cells. This will not necessarily be the conventional cell, so it should be checked using XPREP (even possible without an .hkl file) taking the lattice type found with CELL NOW into account.

If necessary, this conventional cell may then be used in "specified cell" search mode to find the orientation matrix—or the transformation matrix from XPREP can be used to reorient a cell (R option).

The following cells would appear to be plausible, but should be checked using XP REP because they are not necessarily the conventional cells.

CELL_NOW has identified a domain that fits 85.3% of the data with a tolerance of 0.2 (deviation from integer HKL indices).

7. Enter the maximum deviation from integer index cutoff (the default of 0.25 is somewhat high; normally use 0.1 or 0.15). Press [Enter].

New cell from list (number), reorientate (R), accept (A) or quit (Q) [A]: A

8. Enter A or just press [Enter] to accept this cell. The program asks for a name for a .p4p file. Enter the name of the .p4p file for this solution (in this example, domain1.p4p).

.p4p or .spin file to write domain to:domain1.p4p RLATT color-coding employed in file: domain1.p4p White: indexed for first domain Red: not yet indexed

877 reflections within 0.250 of an integer index assigned to domain 1, 877 of them exclusively; 122 reflections not yet assigned to a domain 9. 122 reflections, approximately 1/10 of the data, have not yet been indexed (assigned to a domain). This is more than might be expected for random noise peaks. A search for an additional domain makes sense. The domain 1 cell will be rotated to locate further twin domains iteratively using only the reflections that have not yet been indexed. Enter s to search for another orientation of the newly chosen cell.

Re-refine initial cell (R), search for next domain (S), quit (Q) or choose new cell from list (enter number) [S]:S Cell for domain 2: 12.692 11.016 14.648 89.70 90.95 90.00 Figure of merit: 0.643 %(0.1): 69.7 %(0.2): 97.5 %(0.3): 98.4 Orientation matrix: 0.00598966 0.00402327 0.06807401 -0.03367313 -0.08180340 0.00480114 0.07099302 -0.03914713 -0.00221035 Rotated from first domain by 179.7 degrees about reciprocal axis 1.000 0.001 -0.032 and real axis 1.000 0.002 -0.010 Twin law to convert hkl from first to 0.999 0.004 -0.019 this domain (SHELXL TWIN matrix): 0.003 -1.000 -0.004 0.006 -0.999 -0.064

CELL_NOW has identified an additional domain that fits 97.5% of the remaining data with a tolerance of 0.2. The relationship between this domain and the first domain and the SHELXL TWIN matrix are reported. This example is for a rotational twin about the a* axis.

- 10. Enter the maximum deviation from integer index cutoff for the second domain.
- 11. Enter the name of the .p4p file for this solution (in this example "domain2.p4p").

.p4p or .spin file to write domain to:domain2.p4p

RLATT color-coding employed in file: domain2.p4p White: indexed for first domain Green: current domain (but not in a previous domain) Red: not yet indexed 691 reflections within 0.250 of an integer index assigned to domain 2,

Re-refine initial cell (R), search for next domain (S), quit (Q) or choose new cell from list (enter number) [Q]

3 reflections not yet assigned to a domain

12. Check the number of indexed reflections, and how many reflections belong exclusively to the second orientation.

If the program does not find a suitable twin rotation, it will find a solution that indexes the first domain again. The rotation angle is then close to 0° , and almost no reflections belong exclusively to the second domain.

 Enter <q> to exit CELL_NOW, only 3 reflections are not indexed (and therefore it makes no sense to search for further twin orientations).

C:\struc\guest\twin>

119 of them exclusively;

NOTE: At this point CELL_NOW has indexed a two-component twin. The orientation matrices for the two components are in the "domain2.p4p" file.

11.3 Configuring the Suite

The Bruker Suite includes the ability to customize many features of the program. Most customizations should be left to the site administrator, but some introduction is appropriate.

The following is a collection of examples of possible changes to the configuration files that control the look and feel of the GUI.

11.3.1 The bn-config Configuration File

The appearance and behavior of this Suite of programs can be modified by a configuration file. The programs read a series of configuration files in following order. As described below, a specification in a later file overwrites a setting in an earlier file.

For Windows: these files are (in order):

- 1. bn-config.py in the system drive folder (C:\)
- 2. bn-config.py in the "USERPROFILE" folder
- 3. bn-config in the current folder

For Linux/UNIX: these files are (in order):

- 1. /usr/local/lib/bn-config.py
- 2. .bn-config in your home directory (Please note the initial "." character, which renders this file invisible for the normal ls command).
- 3. bn-config in your current directory.

If none of these files are present (e.g., when the program has just been installed), all parameters use built-in defaults. To change a single configuration parameter, create or edit one of the three files and put in a value for the parameter to be customized. You should:

- put a parameter in (1) if it should be the system default for all users;
- put it in (2) if it is your own default, and other people might want to use other values; and
- put it in (3) if it is only required for a single project.

The configuration files are read as Python programs, and therefore syntax is very important. The best way to use it is to only use variable assignments or function calls. If required, you can comment out lines from your configuration file by preceding them with a # character.

NOTE: Leading space is significant. Start all assignments in the first column. Variable names are case sensitive.

NOTE: APEX3 needs to be restarted before the changes are applied. Some parameters are stored within the project, therefore only new projects will have the changed defaults.

11.3.2 Configuration File Examples

11.3.2.1 Comments

A few notes about Python comments:

Three quotation marks in a row on a line (""") start a comment section The next three quotation marks (""") end the section.

The "pound" or "number sign" character (#)starts a simple comment. This can be anywhere on a line.

11.3.2.2 Default Color Scheme for Image Display

The default color scheme for the image display is given in:

colorramp='Colored_SCD.ICM'

This is the typical BAXS orange display.

The most frequently used other color choices are:

Black_On_White_SCD.ICM

White_On_Black_SCD.ICM

The_Blues_ANY.ICM

Other color ramps are in:

- Windows: C:\bn\src\gui\intensitycolormaps
- Linux: /usr/local/bn/src/gui/intensitycolormaps

11.3.2.3 User Positions

Up to four user positions can be activated in the Center Crystal and Screen Crystal plug-ins.

The detector distance is specified in millimeters. The goniometer angles are specified in degrees. To activate a user defined goniometer position, its userpos<#> variable and at least one of the positional variables must be uncommented. For instruments with a manual detector track, the detector distance variable (dx) should normally not be uncommented because of the risk of setting the distance to a different value than the actual distance. The chi angle setting must be uncommented for instruments with a Kappa goniostat.

An example user position:

```
userpos1 = "User Position 1"
userpos1_dx = 40.0
userpos1_2theta = 23.0
userpos1_omega = 23.0
userpos1_phi = 90.0
userpos1_chi = 54.74
```

11.3.2.4 Automatically Connect to BIS

Automatically connect to the instrument when needed:

```
autoconnect = True
```

NOTE: This is a protected variable that is controlled by the System Administrator.

11.3.2.5 Frames in a Network Shared Folder

IP address or DNS name of the file server used for storing images, followed by the name of a network shared folder on that server. Add additional path segments as comma-separated and quoted strings:

```
fileserver=('x8-client','frames')
```

To find out the DNS, enter the following at a command prompt:

- Windows: echo %computername%
- Linux: hostname

11.3.2.6 Supported Filename Protocols

Currently-supported filename protocols are mb for files that are accessed over a Microsoft Windows network, and file for local files:

```
universalfnprotocols=('smb','file')
```

11.3.3 Functionality Groups in the Configuration File

Sometimes a complete group of options need to be changed to get a specific functionality. For these cases, there are function calls that change a number of variables at once.

Due to the "default-like" nature of these function calls, they should probably be used only in the site-wide configuration files, and even there only at the beginning (but this is not enforced).

The available functions are:

default_protein()

This switches from the default "small-molecule" parameters to more protein-like parameters. At this time, the following parameters are set:

```
chiralonly=1
autochiralpointgroup=1
resomode=1
resolution=2.5
```

default_noprotein()

This sets the defaults back to small-molecule values.

Index

Copyright Notice

Notices-ii

Α

Abort command data collection	2-7 6-40
absorption correction	7-12
Access levels	3-1
Accounts	3-1
Acta Crystallographica	10-2, 10-4
Align Crystal plug-in	2-3
Analyze Data plug-in	2-10, 8-1
APEX3 starting	3-1
APEX3 software	1-1
APEX3Server	2-3
Archive functions	2-6
AUTOSTRUCTURE	9-2
В	

Box tool	2-8
Bravais lattice figure of merit	6-9 6-9
Bravais lattices (suggested)	8-4
brukersupport.com	1-4, 1-6
С	

Calculate Strategy plug-in	2-10
Caution notice defined	1-3
CELL_NOW	6-26, 11-3
Center Crystal plug-in	2-9
centrosymmetric space groups	8-4
Change Password	2-6
chart files	7-10
Circle tool	2-8
Close sample	2-6
Compare Unit Cells plug-in	2-9
Connection dialog	2-7
Correlated frames	6-5

D

7-16 6-5

3-1

3-2

2-2

11-6

Danger notice defined	1-3
Describe Sample plug-in	2-9, 3-4
Determine Space Group plug-in	2-10, 8-1
Determine Unit Cell custom runs	6-3

B bad runs

BCP

Base Name

BIS Server

bn-config file description

omitting during scaling

required for online mode

required rights

connecting to

Determine Unit Cell plug-in	2-9, 6-1
Diagnostic plots	7-17
Disconnect from BIS command	2-7
documentation revision numbers	1-4
Domains in CELL_NOW	11-3
doors (enclosure)	4-2

Ε

Enable Box Size Refinement	7-7
E-value statistics	8-4
Ewald sphere and RMS XY in refinement	6-10 6-10
Execute button	6-38
Exit	2-6
Exiting during data collection	6-40
expected end time	6-36
Experiment plug-in	2-10
Export .p4p or .xml files	2-6

F

Face Indexing	2-10
Face List	7-20
Face normals	7-20
Find a Reflection plug-in	2-10, 8-1
Find Runs button	7-3
First frame	2-8
frames displaying	2-8
Friedel pairs	6-30

G

Generate new dark images	6-39
Generate Report plug-in	2-11
Goniometer head info	4-2
Greek and Roman text	1-3
GUI	2-4

н

Help menu commands	2-7
Histograms in Scale plug-in	7-14
histograms	6-11
HKLF 4 and HKLF 5 for twins	8-10

I

l/sigma(I)	6-7
	07
icing	4-11
Image width	6-5
Import .p4p or .spin file	2-6
Import Runs from Experiment	7-4
Index Crystal Faces plug-in	2-10, 7-19
Initial XYZ Box Size	7-7
Instrument menu commands	2-7
Integrate Debye Rings plug-in	2-10
Integrate Images plug-in	2-10
integrate while collecting	7-4
integrated intensities	7-1
integrating images from a CD or DVD) 7-3
Intrinsic Phasing	9-6

Κ

KAPPA Series II goniometer	
centering the crystal	4-3

L

Last frame2-8lattice exceptions8-3licenses1-5Line tool2-8Logging in3-2Logout2-6

Μ

Mean Weight	7-14
Measurement Server	2-1

Menu Bar

1-4

merging	8-5	Reciprocal Lattice Viewer plug-in	6-13
merohedral twinning	8-12	referenced documentation	1-4
Microscope	4-1	Refine button	7-14
Mosaicity	7-9	Refine Structure plug-in	2-11
Movie view	2-8	Reflection Group Combo Box	6-7
Ν		Reopen sample	2-6
		report template files	10-2
New Sample	2-6, 3-3	Resolution circle	
Next frame	2-8	drawing	2-8
Next run	2-8	Resolution Limit	7-2
non-centrosymmetric space groups	8-4	Retake if topped	6-39
Normals in Face Indexing	7-20	reverse Movie view	2-8
Note defined	1-3	reverse-beam geometry	6-30
	7_12 7_19	RLATT	2-9
from Face Indices	7-25	RMS XY	6-10
		Run command	2-6
0		Run Experiment plug-in	2-10
Open frame	2-8	R-values	7-14
Open sample	2-6, 2-8	c	
Orient Crystal plug-in	2-10		7 4 4
Р		SADABS documentation	7-11
- n4n file		safety issues	1-4
writing from Reciprocal Lattice V	liewer 6-26	SAINT file format description	7-1 7-10
nie format	0-20	Samle Database	7-10
pink fields (invalid entries)	2-4	automatic startup and shutdown	2-3
drawing	2-8	default account	3-2
plug-ins	2-2		2-3
poor-quality crystals	4-16	Sample Netes window	2-0
Precession Images	2-10		2-0, 2-0
Previous frame	2-8		2-0, 2-0
Previous run	2-8	closing	7-18, 9-4
		Scale Variations plot	7-17
R		scaling	7-1
R(int)	7 4 7	Screen Crystal plug-in	2-9
variations	/-1/	ShelXle	9-9
KI	9-8		-

2-5

Radiation Safety Officer

shutterless	6-30
Simple Scans plug-in	2-3
Smooth images	6-7
Solve Structure plug-in	2-11, 9-5
Space Group Determination plug-in	2-10
Spatial Distribution plots	7-18
Stack Bar view	2-12
Status window	2-7
Stop button	2-8
stop Movie view	2-8
strict efficiency theta limitations	6-30
Structure refinement	
plug-in	2-11
Structure Solution plug-in	2-11
Suite	
rights required to run	3-1
Synthesize Precession Images 2-1	0, 8-1, 8-13

т

Task Bar	2-9
Task Display Area	2-14
technical support	1-6
Title Bar	2-5
Toggle Shutter command	2-7
Tool Icon Bar	2-8
training	1-6
Transform Unit Cell plug-in	2-9
transformations (matrix)	6-12
Tree View	2-13
T-tool (in Index Crystal Faces plug-in)	7-20
twins and precession images	8-10 8-14
Typographical conventions	1-2

U

Unit Cell tool	
in Reciprocal Lattice Viewer	6-24
Unwarp and Convert Images plug-in	2-10

Unwarping images	6-39
Update distance command	2-7
user positions	11-7

V

Validate button	6-40
View Diffraction Space plug-in	2-10, 8-1
View Images plug-in	2-9
View Molecule plug-in	2-11
View Reciprocal Lattice plug-in	2-9

W

weak reflections	7-9
What's This? Help function	1-6, 2-8
Windows menu commands	2-7
work directory	7-1

Χ

XPRESSO plug-in	2-9, 5-1
X-ray safety	1-4

Y

بانما	4.4
yiiu	1-2