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Polychlorinated biphenyls
hydroxylated PCBs. Several
and hydroxysteroid (alcoh
been isolated and character
monoesters from the corres
chlorinated benzene boron
tion with boron tribromide
(PCBs), a major class of persistent organic pollutants, are metabolized to
hydroxylated PCBs are substrates of cytosolic phase II enzymes, such as phenol
ol) sulfotransferases; however, the corresponding sulfation products have not
ized. Here we describe a straightforward synthesis of a series of ten PCB sulfate
ponding hydroxylated PCBs. The hydroxylated PCBs were synthesized by coupling
ic acids with appropriate brominated (chloro-)anisoles, followed by demethyla-
. The hydroxylated PCBs were sulfated with 2,2,2-trichloroethyl chlorosulfate

using DMAP as base. Deprotection with zinc powder/ammonium formate yielded the ammonium salts of the
desired PCB sulfate monoesters in good yields when the sulfated phenyl ring contained no or one chlorine
substituent. However, no PCB sulfate monoesters were isolated when two chlorines were present ortho to the
sulfated hydroxyl group. To aid with future quantitative structure activity relationship studies, the structures
of two 2,2,2-trichloroethyl-protected PCB sulfates were verified by X-ray diffraction.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Polychlorinated biphenyls (PCBs) were manufactured commer-
cially in large quantities and used in numerous technical applications,
for example as lubricants, cooling fluids, flame retardants, adhesives,
and plasticizers (Hansen, 1999; Robertson and Hansen, 2001). PCBs
are still in use as dielectric fluids in capacitors and transformers. Their
widespread industrial use and physicochemical properties, such as
lipophilicity, semi-volatility and stability towards biological, chemical
and thermal degradation, have resulted in widespread environmental
contamination. PCBs have also been associated with a broad range of
adverse human health effects, such as (neuro-)developmental toxicity
(Kodavanti, 2004) and carcinogenicity (Silberhorn et al., 1990). The
production of PCBs was banned in the United States in the late 1970s
because of these environmental and public health concerns.

Especially lower chlorinated PCBs undergo oxidative metabolism
to hydroxylated PCBs catalyzed by cytochrome P-450 enzymes
(Letcher et al., 2000). Some hydroxylated PCB metabolites persist in
the blood, liver and other tissues of humans, where they can reach
levels that are comparable to PCB blood levels (Bergman et al., 1994;
Hovander et al., 2006; Park et al., 2007). They potently inhibit the
activity of phenol sulfotransferases (SULT) and, thus, may interfere
al and Environmental Health,
Campus #221 IREH, Iowa City,
335 4290.
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with the sulfation of endogenous and exogenous compounds (Kester
et al., 2000; Schuur et al., 1998a,b,c; van den Hurk et al., 2002; Wang
et al., 2005, 2006). Similarly, hydroxylated PCBs are inhibitors of
hydroxysteroid (alcohol) sulfotransferases, such as human SULT2A1
(Liu et al., 2006). There is also evidence that some hydroxylated PCBs
are substrates for SULTs. Sacco and James (2005) demonstrated that
several hydroxylated PCBs are sulfated by polar bear liver cytosol. Liu
et al. (2006) recently reported that two hydroxylated PCBs, 4-
hydroxy-2′,3,5-trichlorobiphenyl and 4′-hydroxy-2,3′,4,5′-tetrachlor-
obiphenyl, are substrates for SULT2A1.

Very little is currently known about the biological properties and
metabolic disposition of PCB sulfates. While many phenyl sulfates are
water soluble and readily excreted, calculated octanol/water partition
coefficients indicate that PCB sulfates may retain significant lipophilic
properties (James, 2001). The first chemical synthesis of a series of
lower chlorinated PCB sulfate monoesters described herein provides a
source of sufficient quantities of these metabolites for detailed study
of their chemical and biochemical properties, and how these proper-
ties may relate to the metabolic disposition and detoxication of PCBs
and hydroxylated PCBs.

2. Materials and methods

2.1. Chemicals and instruments

All of the chlorinatedbenzene boronic acids, the brominated phenols
and tetrakis(triphenylphosphine)palladium(0) were obtained from
te metabolites of polychlorinated biphenyls, Environ Int (2009),
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Scheme 1. Sulfation of substituted phenols ((a) 2,2,2-trichloroethyl chlorosulfate,
DMAP, dry CH2Cl2, 10 h; (b) Zn powder, HCO2NH4, MeOH). Sulfate monoester 3b was
identified in situ using TLC, but could not be isolated.
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Fisher Scientific (Fairlawn, New Jersey, USA). 4-Hydroxy biphenyl (7a)
was purchased from Sigma-Aldrich chemical company (St. Louis, MO,
USA). All hydroxylated PCBs 7were synthesized as described previously
(Lehmler and Robertson, 2001; McLean et al., 1996). Chlorosulfuric acid
2,2,2-trichloroethyl ester was synthesized according to the method by
Hedayatu et al. (1971). The 1H and 13C NMR spectra were recorded on a
multinuclear Bruker DRX 400 Digital NMR Bruker spectrometer at
ambient temperature. All 1H and 13C chemical shifts are reported inparts
per million (ppm) relative to internal tetramethylsilane (Me4Si).
Melting points were determined using a MelTemp apparatus and are
uncorrected. The gas chromatography-mass spectra (GC-MS) were
recorded using a Thermo Voyager EI instrument. High-resolution mass
spectra (HR-MS) were measured using an Autospec ESI-MS instrument
at the University of Iowa Mass Spectrometry Facility. Infrared spectra
(IR) were recorded on a NEXUS 670 FT-TR instrument. UV/Vis spectra
were measured using a Perkin Elmer Lambda 650 UV/Vis spectrometer
at 23 °C (UV/Vis spectral data of the corresponding hydroxylated PCBs 7
are shown in parentheses for comparison). The characterization of
selected compounds is provided below. The characterization of all other
compounds is provided in the Supplementary material.

2.2. General procedure for the synthesis of sulfuric acid 2,2,2-trichlororo-ethyl
(TCE) esters of hydroxylated phenols and PCBs

A solution of 2,2,2-trichloroethyl chlorosulfate (3.2 mmol) in
anhydrous DCM (5mL) was added slowly at 0 °C to a solution of phenols
1a,b or hydroxylated PCB 7a–l (Lehmler and Robertson 2001; McLean
et al., 1996) (3 mmol) and 1.5 equivalents of 4-N,N′-dimethylaminopyr-
idine (DMAP, 4.5mmol) in anhydrous DCM (15mL) (Liu et al., 2004). The
reaction mixture was stirred for 30 min at 0 °C, allowed to warm to
ambient temperature and stirred for an additional 10 h. The solvent was
removed under reduced pressure and the residue was dissolved in ethyl
acetate (20 mL). The ethyl acetate solution was washed with distilled
water (20 mL), 1 M HCl solution (2×20mL) and distilled water (20 mL).
The organic phase was dried over anhydrous Na2SO4. The solvent was
Scheme 2. Synthesis of hydroxylated PCB sulfate ammonium salts ((a) 2 mol% Pd(PPh3)
chlorosulfate, DMAP, dry CH2Cl2, 10 h; (d) Zn powder, HCO2NH4, MeOH).
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removed under reduced pressure, and the residuewas purified by column
chromatographyonsilica gel using amixtureofn-hexanes andchloroform
(8:1 to 5:1, v/v) as eluent. The TCE esters 2a–b and 8a–lwere obtained in
good yields ranging from 75% to 94%.

2.2.1. Sulfuric acid 4′-chloro-biphenyl-4-yl 2,2,2-trichloroethyl ester (8b)
White solid; mp: 108–109 °C; 1H NMR (400 MHz, CDCl3): δ/ppm

4.86 (s, 2H, CH2), 7.42 (AA′XX′ system, 2H, J~8.6 Hz), 7.43 (AA′XX′
system, 2H, J~8.6 Hz), 7.47 (AA′XX′ system, 2H, J~8.6 Hz), 7.59 (AA′
XX′ system, 2H, J~8.6 Hz). 13C NMR (100 MHz, CDCl3): δ/ppm 80.4
(CH2), 92.3 (CCl3), 121.5 (2×CH), 128.4 (2×CH), 128.6 (2×CH), 129.1
(2×CH), 134.1, 137.9, 139.9, 149.6 (CAr-OSO3). IR (film): 3027, 2975,
1480, 1409, 1389, 1215, 1153, 1095, 989, 821 cm−1. EI-MSm/z (relative
intensity, %): 414 (35, C14H10Cl4O4SU+), 284 (25), 217 (10), 203 (100),
175 (46), 149 (15), 139 (35).

2.3. General procedure for the synthesis of ammonium salts of
chlorinated biphenyl sulfates

Ammonium formate (0.77 g,12mmol)was added to a solutionof the
(chlorinated) biphenyl TCE sulfate 2 or 8 (2 mmol) in methanol (5 mL)
(Liu et al., 2004). Zinc dust (0.26 g, 4 mmol) was added after the
ammonium formate had dissolved completely, and the reactionmixture
was stirred until the TCE ester 2 or 8 was consumed completely as
determined by TLC (usually within 30 min). The solution was filtered
through Celite and concentrated under reduced pressure at tempera-
tures below 35 °C. The productwas purified by column chromatography
on silica gel using a mixture of chloroform, methanol and ammonium
hydroxide (8:1:0.2, v/v) as eluent. The solvent was removed under
reduced pressure at temperature below 35 °C to yield the final products
as a white solid with yields ranging from 83% to 97%. The Rf values of all
PCB sulfates were approximately R f = 0.3 (CHCl3:CH3OH:
NH4OH=10:2:0.5, v/v).

2.3.1. Sulfuric acid mono-(4′-chloro-biphenyl-4-yl) ester, ammonium
salt (9b)

White solid; mp: 250 °C (dec.); 1H NMR (400 MHz, CD3OD): δ/ppm
7.38 (AA′XX′ system, 2H, J~9.0 Hz), 7.40 (AA′XX′ system, 2H, J~8.9 Hz),
7.56 (2 overlapping AA′XX′ systems, 4H, J~8.8 Hz). 13C NMR (100 MHz,
CD3OD): δ/ppm 122.9 (2×CH), 128.7 (2×CH), 129.4 (2×CH), 129.9
(2×CH), 134.3, 137.7, 140.6, 153.9 (CAr-OSO3). IR (KBr): 3235, 3079, 1246,
1061 cm−1. UV/Vis: λ9b,max(MeOH)=258 nm, ε9b=2.42×104 L mol−1

cm−1 (λ7b,max(MeOH)=267 nm, ε7a=2.29×104 L mol−1 cm−1). HRMS
(ESI, negative): [M-NH4]− foundm/z 282.9844, calculated for C12H8(35)
ClO4S 282.9832.
4, K2CO3, toluene, 80 °C, 24 h; (b) 1 M BBr3 in CH2Cl2, 10 h; (c) 2,2,2-trichloroethyl
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Table 1
Synthesis of hydroxylated PCB sulfate ammonium salts.

# TCE sulfate diester (2 and 8) Yield/% # Sulfate monoester (3 and 9) Yield/%

2a 83

2b 77 3b
–a

8a 84 9a 97

8b 85 9b 90

8c 81 9c 93

8d 75 9d 83

8e 81 9e 92

8f 77 9f 97

8g 79 9g 94

8h 83 9h 96

8i 85 9i 97

8j 85 9j 85

8k 83 9k –a

8l 94 9l –a

a The respective PCB sulfate monoesters are unstable and easily degrade to the corresponding hydroxylated PCBs.
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2.4. Single crystal structure determination of 8e and 8k

Crystals of the TCE-protected PCB sulfates 8e and 8k suitable for
crystal structure analysis were obtained by slow crystallization from
methanol. X-ray diffraction data were collected at 90.0(2) K on a
Nonius KappaCCD diffractometer. Raw data were integrated, scaled,
merged and corrected for Lorentz-polarization effects using the
Denzo-SMN package (Otwinowski and Minor, 1997). The structures
Please cite this article as: Li X, et al, An efficient approach to sulfa
doi:10.1016/j.envint.2009.02.005
were solved by direct methods (Sheldrick, 2008) and missing atoms
were located in difference Fourier maps (Sheldrick, 2008). Refinement
was carried out against F2 by weighted full-matrix least-squares.
Hydrogen atoms were found in difference maps but subsequently
placed at calculated positions and refined using appropriate riding
models. Non-hydrogen atoms were refined with anisotropic displace-
ment parameters. Atomic scattering factors were those of SHELXL
(Sheldrick, 2008), as taken from the International tables for
te metabolites of polychlorinated biphenyls, Environ Int (2009),
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Table 2
X-ray crystallographic data for PCB TCE sulfate diesters 8e and 8k.

Property 8e 8k

Formula C14H9Cl5O4S C14H7Cl7O4S
M 450.52 519.42
T/K 90.0(2) 90.0(2)
Wavelength 0.71073 Å 0.71073 Å
Space group Monoclinic, P21/c Monoclinic, P21/n
a (Å) 9.0188(2) 8.8951(2)
b (Å) 10.5961(2) 17.8153(4)
c (Å) 18.2405(3) 12.3093(3)
α (°) 90 90
β (°) 90.9292(8) 104.5587(11)
γ (°) 90 90
V (Å3) 1742.91(6) 1888.01(8)
Z 4 4
Calculated density
(mg m−3)

1.717 1.827

Absorption coefficient
(mm−1)

0.968 1.181

F(000) 904 1032
Crystal size (mm) 0.37×0.33×0.26 0.25×0.24×0.20
θ range (°) 2.22 to 27.48 2.06 to 27.48

−11≤h≤11 −11≤h≤11
Limiting indices −13≤k≤12 −23≤k≤17

−23≤ l≤23 −15≤ l≤15
Reflections collected/unique 23,838/3984 22,255/4327
R(int) 0.0353 0.0337
Completeness to θ=25.00 99.9% 99.9%
Max. and min. transmission 0.787 and 0.654 0.798 and 0.757
Data/restraints/parameters 3984/0/217 4327/0/235
Goodness-of-fit on F2 1.070 1.098
Final R indices IN2σ(I) R1=0.0306; wR2=0.0694 R1=0.0481; wR2=0.1153
R indices (all data) R1=0.0403; wR2=0.0741 R1=0.0853; wR2=0.1330
Largest diff. peak and hole
(e Å−3)

0.322 and −0.484 0.888 and −0.668
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Crystallography vol. C (Wilson, 1992). The crystal data and the related
parameters are summarized in Table 2. Additional crystallographic
data have been deposited with the Cambridge Crystallographic Data
Center as Supplementary Publications CCDC 687167 (8e) and CCDC
719235 (8k). Copies of the data can be obtained free of charge on
application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax,
(+44)1223-336-033; e-mail, deposit@ccdc.cam.ac.uk).

3. Results and discussion

3.1. Synthesis

A variety of sulfation reagents and conditions have been reported in the literature.
For example, sulfur trioxide complex with pyridine or tertiary amines are commonly
used for the sulfation of different alcohols, including saccharide derivatives (Nishino
and Nagumo, 1992; Petitou and van Boeckel, 2004; Pires et al., 2001) and organic
compounds with phenolic moieties, such as phenols (Hanson et al., 2006; Hearse et al.,
1969; Ragan, 1978), flavanoids (Gunnarsson and Desai, 2002), flavonoids (Gunnarsson
and Desai, 2003) and steroids (Santos et al., 2003). However, these sulfation methods
have drawbacks, such as tedious purification procedures and low yields. In recent years,
novel sulfation methods have been developed to overcome these problems. In
particular substituted alkyl chlorosulfates, including isobutyl, neopentyl and 2,2,2-
trichloroethyl chlorosulfate (TCE-Cl), have been used to obtain sulfate diesters which
form the desired sulfate monoesters upon deprotection in good-to-excellent yields (Liu
et al., 2004; Simpson and Widlanski, 2006).

Inorder to obtain PCBsulfates to investigate their biological role in themetabolismand
toxicity of PCBs, we employed the 2,2,2-trichloroethyl (TCE)-protection method to
synthesize a series of sulfate metabolites of several lower chlorinated PCBs. As shown in
Scheme 1, we initially synthesized the brominated TCE sulfate diester 2b and investigated
its couplingwith chlorinated benzene boronic acids 4 to obtain the desired PCB TCE sulfate
diesters. However, the Suzuki coupling of 2b with chlorinated benzene boronic acids 4
failed because the TCE group is unstable under the reaction conditions employed.

In an alternate approach, we first prepared the hydroxylated biphenyl derivatives 7
and introduced the sulfate group in the final steps of the synthesis. As shown in
Scheme 2, a series of hydroxylated PCB derivatives (7a–l) were synthesized using the
Suzuki coupling of chlorinated benzene boronic acids 4 and appropriate brominated
(chloro)-anisoles 5, followed by demethylation with boron tribromide (Lehmler and
Robertson, 2001; McLean et al., 1996). Subsequently, TCE-protected PCB sulfate diesters
8a–j were synthesized from the hydroxylated PCBs 7a–l by sulfation with 2,2,2-
Fig. 1. Molecular structure of sulfuric acid 2′,5′-dichloro-biphenyl-4-yl 2,2,2-trichlor-
oethyl ester (8e) and 2′,3,5′,5-tetrachloro-biphenyl-4-yl 2,2,2-trichloroethyl ester (8k)
showing the atom labeling scheme. Displacement ellipsoids of 8e and 8k are drawn at
the 50% probability level.
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trichloroethyl chlorosulfate as sulfation reagent and DMAP as base. The sulfation
reactions proceeded in good-to-excellent yields ranging from 75 to 94% (Table 1).

Zinc powder/ammonium formate is an efficient and mild deblocking system and can
be employed with halogenated aromatic compounds without dehalogenation (Liu et al.,
2004). Therefore, the TCE groupwas removed in the last step of the synthesis by reductive
elimination using this system, with yields ranging from 83% to 97% for PCB TCE esters 8a–j
(Table 1). Although the deprotection of the PCB TCE sulfate diesters 9k and 9l yields PCB
sulfatemonoesters according toTLC analysis,wewereunable to isolate thedesiredproduct
after column chromatography on silica gel with chloroform–methanol–ammonium
hydroxide as eluent. Instead, the product rapidly degraded in solution to the hydroxylated
starting materials 7k and 7l. Similarly, the chlorinated phenol TCE diester 2b did not yield
the desired sulfate monoester, which suggests that the sulfate monoesters of phenolic
compounds with two chlorine atoms in ortho position to the sulfated phenol are unstable
under the conditions required for the isolation of solid products.

One possible explanation for this observation is the increasing degree of
chlorination in the hydroxylated phenyl ring, which increases the acidity (pKa value:
di-orthobmono-orthobnon-ortho chloro (Tampal et al., 2002)). As a result, the
hydroxylated PCBs 7k and 7l are excellent leaving groups, thus resulting in the
instability of the corresponding PCB sulfate monoesters. Similarly, the stability of
phenolic sulfatemonoesters has been shown to correlate with the pKa of the phenol and
the length of the CAr–O and O–S bond length of the sulfate monoester (Brandao et al.,
2005). This interpretation is also supported by the C–O and S–O bond length observed
in the molecular structures of TEC sulfate diesters 8e and 8k (see below).

The structures of the sulfate esters were confirmed by NMR, IR, and UV/Vis. In the
IR spectra, we observed typical absorption bands at 1200–1220 cm−1 and 1420–
1460 cm−1 (SfO of TCE-protected sulfate diesters 8), 1000–1010 cm−1 (O–S–O of TCE-
protected sulfate diesters 8), 1230–1250 cm−1 and 1440–1490 cm−1 (SfO of sulfate
monoester ammonium salts 9), and 1060–1070 cm−1 (O–S–O of sulfate monoester
ammonium salts 9) (Ragan 1978). In the UV/Vis spectra, the λmax values of the
hydroxylated PCBs 7 were always greater than the λmax values of the corresponding
sulfates 9, with the difference ranging from 2 to 10 nm. These differences in λmax may
be useful for the detection of PCB sulfate monoesters 9 with UV/Vis detectors.

3.2. Solid state molecular structure of PCB TCE sulfate diesters

The availability of structural information of PCB sulfate monoesters would be
valuable for quantitative structure activity relationship (QSAR) studies of their
interaction with SULTs. Unfortunately, we were unable to obtain crystals of the PCB
sulfate monoesters suitable for X-ray crystal structure determination due to their
instability under the conditions employed for crystallization. Instead,we obtained single
te metabolites of polychlorinated biphenyls, Environ Int (2009),
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Table 3
Selected bond length, bond angles and dihedral angles of PCB TCE sulfate monoesters 8e and 8k.

Property 8e 8k

Bond length (Å) C4–O1 1.426(2) 1.405(4)
S1–O1 1.5853(13) 1.600(2)
S1–O2 1.5684(12) 1.564(3)
S1–O3 1.4138(13) 1.409(3)
S1–O4 1.4162(13) 1.415(3)

Bond angles (°) O1–S1–O2 102.82(7) 101.65(13)
O1–S1–O3 110.14(7) 110.29(14)
O1–S1–O4 104.55(7) 104.36(14)
O2–S1–O3 105.25(7) 105.42(15)
O2–S1–O4 110.17(7) 110.25(15)
O3–S1–O4 122.32(8) 122.93(16)

Dihedral angles (°) Ar–Ar′ 52.13(6) 50.03(10)
Deviation of O1 from Ar plane (Å) 0.092(5) 0.128(5)

Note: Ar and Ar′ represent the aromatic rings of the biphenyl moiety.
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crystals of twoPCB TCE sulfate diesters. Themolecular structure and the labeling scheme
of selected PCB sulfate diesters (8e and 8k) are shown in Fig. 1. Relevant X-ray
crystallographic data and selected bond lengths, angles and dihedral angles are reported
in Tables 2 and 3, respectively. To the best of our knowledge, no crystal structures of
similar mixed alkyl aryl esters of sulfuric acid have been reported previously.

The length of the C4–O1 and S1–O1 bonds of diesters 8e and 8k differed slightly
(Table 3). While the C4–O1 bond of 8k was slightly shorter compared to 8e (1.405 Å
versus 1.426 Å), the S1–O1 bond of 8k was longer compared to 8e (1.600 Å versus
1.585 Å). These differences in the bond lengths of 8e and 8k are due to the two
electronegative chlorine subtituents ortho to the sulfate group of 8k. This results in a
more positive partial charge on the C-4 carbon atom and, ultimately, a shorter C4–O1
bond length. At the same time, the reduced electron density on the O1 atom contributes
to a longer and weaker S1–O1 bond. The increasing weakness of the S1–O1 bond is due
to an increasing number of electronegative substituents (i.e., chlorines) in the phenyl
ring system, and explains, at least in part, why wewere unable to isolate the PCB sulfate
monoesters corresponding to the di-ortho substituted TCE sulfate diesters 8k and 8l.
Similarly, the C–O bond length of aromatic sulfuric acid monoesters (and ultimately
their stability) correlated with the C–O bond length and, ultimately, the pKa value of the
corresponding phenol (Brandao et al., 2005).

The O1 atom of the two PCB TCE sulfate diesters was in the plane of the phenyl ring,
with deviations from the ring plane of 0.092 Å and 0.128 Å for 8e and 8k, respectively.
The bond lengths of the S1–O1 and S1–O2 ester bondswere similar for both compounds
and ranged from 1.564 Å to 1.600 Å. In contrast, the S–O bond length in aromatic sulfate
monoesters ranged from 1.611 to 1.653 Å (Brandao et al., 2005), which is significantly
longer than the bond length observed for 8e and 8k. The S1–O3 and S1–O4 bond
lengths were shorter in the diesters (1.409 Å to 1.416 Å) compared tomonoesters (1.427
to 1.445 Å) (Brandao et al., 2005) due to the double bond character of these bonds.

The dihedral angle between the phenyl rings of a PCB congener determines its three
dimensional structure and, thus, its affinity to cellular targets, such as nuclear
transcription factors (Lehmler et al., 2002; Vyas et al., 2006a). The solid state dihedral
angles between the two phenyl rings of PCB TCE sulfate diesters were smaller compared
to the structurally-related PCB metabolites. For example, the solid state dihedral angle
between the two phenyl rings of 8e (52.13°) was smaller compared to the
corresponding methoxylated PCB (59.92°) (Vyas et al., 2006b). These deviations from
the energetically most favorable conformations of 8e and 8k are likely due to crystal
packing effects, which allow the molecule to adopt an energetically unfavorable
conformation (i.e., dihedral angle) to maximize intermolecular interactions and, thus,
the lattice energy in the crystal.

4. Conclusions

Hydroxylated PCBs are emerging as an important, but frequently
overlooked, contributor to PCB toxicity. Little is known about the
disposition of this group of PCB metabolites and their toxicity, both in
rodent animal models and humans. In recent years, some hydro-
xylated PCBs 7 have been documented to inhibit cytosolic SULTs,
whereas other hydroxylated PCBs 7 appear to be substrates for SULTs.
Here, we report the first chemical synthesis of a series of PCB sulfate
monoesters 8 in a four step synthesis from chlorinated benzene
boronic acids 4 and brominated (chloro-)anisoles 5. Suzuki coupling
Please cite this article as: Li X, et al, An efficient approach to sulfa
doi:10.1016/j.envint.2009.02.005
of boronic acids 4 with brominated anisoles 5, followed by
demethylation with BBr3 yielded the desired hydroxylated PCBs 7.
Subsequently, sulfation with 2,2,2-trichloroethyl chlorosulfate and
deprotection gave the desired PCB sulfatemonoesters 9a–j in good-to-
excellent yields. The ammonium sulfate monoesters 9 are unstable
over extended periods of time and degrade to the corresponding
hydroxylated PCBs. This is in particular true for PCB sulfate
monoesters with two chlorine substituents ortho to the sulfate
group. Most likely this is due to the increased acidity of the phenolic
ring system. In summary, this series of PCB sulfate monoesters is
available to study their physicochemical properties, their disposition
in vivo and their interaction with SULTs and other enzymes.
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