Soluble n-type pentacene derivatives as novel acceptors for organic solar cells†

Yee-Fun Lim,†‡a Ying Shu,†‡b Sean R. Parkin,b John E. Anthony‡b and George G. Malliaras*‡

Received 22nd October 2008, Accepted 3rd February 2009
First published as an Advance Article on the web 17th March 2009
DOI: 10.1039/b818693f

6,13-Bis(trisopropylsilyl-ethynyl) (TIPS)-pentacene has proven to be a promising soluble p-type material for organic thin film transistors as well as for photovoltaics. In this work, we show that adding electron-withdrawing nitrile functional groups to TIPS-pentacene turns it into an n-type material, which can be used as an acceptor for organic solar cells. Several new cyanopentacenes with different trialkylsilyl functional groups have been synthesized. The HOMO–LUMO energy levels can be tuned by varying the number of nitrile groups, while the trialkylsilyl groups control crystal packing and film morphology. Solar cells were fabricated from a blend of poly(3-hexylthiophene) (P3HT) as the donor and the cyanopentacenes as acceptors, and we found that the acceptors that stack in a 1D “sandwich-herringbone” exhibited the best performance of derivatives in this study. A solar cell fabricated from a blend of P3HT and 2,3-dicyano-6,13-bis(tricyclopentylsilyl-ethynyl) pentacene (2,3-CN2-TCPS-Pn) exhibited a power conversion efficiency of 0.43% under 100 mW cm−2 AM 1.5 illumination.

1. Introduction

Organic solar cells (OSCs) promise energy production at reduced cost, since they can be fabricated by low-cost methods such as roll-to-roll processes.‡ Blends of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) represent one of the most efficient OSC material sets, yielding efficiencies of 5%.§ The success of PCBM as a champion acceptor for OSCs is due to its ability to accept electrons from semiconducting polymers at ultrafast (≈10−12 s) time scales,§ and the nano-scale interpenetrating network that it forms with these polymers.‡ However, PCBM suffers from disadvantages including high energy costs for material production and poor absorption in the visible spectrum.§ Excited fullerene states are also known to produce highly reactive singlet oxygen,§ which can lead to device degradation in air.

Besides PCBM and other fullerene derivatives, efficient OSCs have been fabricated predominantly from polymer acceptors, with best reported efficiencies around 1.8%.§ Polymer acceptors have the advantages of good absorption in the visible region and a higher LUMO energy level than PCBM, giving rise to a higher open-circuit voltage (VOC).§ The polydispersity of polymers, however, increases fabrication complexity since performance has been shown to be correlated to molecular weight.§ Electron transport in some polymer acceptors is trap-limited,§ which reduces fill factor and lowers efficiency. It is therefore desirable to search for alternative n-type small molecule acceptors. Recently, it has been reported that solar cells with Vinazene derivatives as small molecule acceptors achieved efficiencies as high as 0.75%.§

6,13-Bis(trisopropylsilyl-ethynyl) (TIPS)-pentacene is a promising p-type organic semiconductor for use in organic thin film transistors (OTFTs)10 and OSCs.11 TIPS-pentacene is soluble in common organic solvents, exhibits excellent 2D π-π stacking,12 high hole mobility (≥1 cm2 V−1 s−1),13 and good absorption in the visible region.14 When combined with the acceptor C60 in a bilayer configuration, a solar cell efficiency of 0.52% was achieved.11 It has been reported that the addition of nitrile functional groups to this molecule reduces its HOMO–LUMO energy levels,13 which raises the intriguing possibility of it being used as an n-type acceptor in OSCs. The cyanation of acenes has also been theorized to promote π-π stacking and decrease internal reorganization energy.14

In this work, we report on the synthesis of various cyanopentacenes, and their solar cell performance when blended with P3HT as a donor. Crystal packing and film morphology are changed by modifying the trialkylsilyl group, while varying the number of nitrile groups alters the HOMO–LUMO energy levels. This tunability is highly desirable since a recent study shows that OSC efficiency is strongly dependent on the relative HOMO–LUMO energy levels between donor and acceptor.15 Our results show that cyanopentacenes can be employed as OSC acceptors, with efficiencies up to 0.43%.

† These authors contributed equally to this work.
2. Experimental

2.1 Synthetic details

General. Bulk solvents (hexanes, dichloromethane, and acetone) were purchased from Pharmco-Aaper. Dry THF was purchased from Aldrich. Commercial acetylene (TIPS) was purchased from GFS Chemicals. Silica gel 230–400 mesh was bought from Sorbent Technologies. NMR spectra were measured on a Varian (Gemini 200 MHz) spectrometer, chemical shifts were reported in ppm relative to CDCl$_3$ as an internal standard. Mass spectroscopy was performed by laser-desorption ionization (LDI) on a JEOL (JMS-700 T) Mass Spectrometer. Differential scanning calorimetry (DSC) was performed using an N$_2$-purged Mettler DSC 822e with a scan rate of 10 °C min$^{-1}$.

General procedure for the preparation of cyanopentacenes. The synthesis of trialkylsilylethynyl-substituted cyanopentacenes (Fig. 1) began by the condensation of 4,5-diiodobenzene-1,2-dicarbaldehyde with either 1,4-cyclohexanedione or 1,4-dihydroxanthracene to yield tetraiodo or diiodo pentacenequinone. Ethynyllithium solutions were prepared by treatment of the alkyne with nBuLi in THF for 1 h, followed by addition of the diiodo or tetraiodo pentacenequinone. After the quinone was fully dissolved, the reaction was quenched with saturated ammonium chloride solution, the crude diol was isolated via silica chromatography (hexanes–dichloromethane 4 : 1 v/v). Deoxygenation of the diol proceeded via the Miao–Bunz deoxygenation method, and the resulting trialkylsilylethynyl iodopentacenes were recrystallized from hexanes. The trialkylsilylethynyl iodopentacenes were then treated with potassium cyanide in the presence of a palladium(0) catalyst and CuI in THF at 80 °C for 16 h to yield the desired cyanopentacenes. The reaction products were purified first by chromatography (hexanes–dichloromethane 1 : 1 v/v). Compounds 1a–1d were then recrystallized from acetone, 2a was recrystallized from dichloromethane, and 3c was recrystallized from hexanes. Monocyano TCPS pentacene (3e) was obtained as a reaction byproduct from the cyanation of diiodo TCPS pentacene. For clarity, the molecular structures of the cyanopentacenes are shown in Fig. 2.

2,3-Dicyano-6,13-bis-(triisopropylsilylethynyl)pentacene (2,3-CN2-TIPS-Pn) (1a). 1H NMR (200 MHz, CDCl$_3$): δ 9.38 (2H, s), 9.33 (2H, s), 8.43 (2H, s), 7.99 (2H, dd, $J = 3.0, 6.2$ Hz), 7.48 (2H, dd, $J = 3.0, 6.6$ Hz), 1.36 (42H, s). 13C NMR (50 MHz, CDCl$_3$): δ 138.8, 133.2, 131.5, 131.3, 129.7, 128.9, 128.7, 127.1, 126.8, 120.1, 116.2, 109.7, 108.1, 103.4, 19.0, 11.6. MS (LDI) m/z 688 (100%, M$^+$). Decomposition temperature: 350 °C.

2,3-Dicyano-6,13-bis-(triisobutylsilylethynyl)pentacene (2,3-CN2-TIBS-Pn) (1b). 1H NMR (200 MHz, CDCl$_3$): δ 9.34 (2H, s), 9.29 (2H, s), 8.42 (2H, s), 7.92 (2H, dd, $J = 3.2, 6.6$ Hz), 7.39 (2H, dd, $J = 3.4, 6.8$ Hz), 2.16 (6H, sept, $J = 7.4$ Hz), 1.16 (18H, s).

![Fig. 1](image_url) The synthesis of functionalized cyanopentacenes.
(2H, d, J = 6.6 Hz), 0.98 (12H, d, J = 7.0 Hz). 13C NMR (50 MHz, CDCl3): δ 138.8, 133.5, 131.8, 131.6, 129.8, 129.2, 128.9, 127.4, 127.0, 120.3, 116.4, 112.6, 108.5, 103.7, 26.7, 25.6, 25.5. MS (LDI) m/z 772 (100%, M+). Decomposition temperature: 245 °C.

2,3-Dicyano-6,13-bis-(tricyclopentylsilylethynyl)pentacene (2-CN-TCPS-Pn) (1c). 1H NMR (200 MHz, CDCl3): 6 9.34 (2H, s), 9.29 (2H, s), 8.42 (2H, s), 7.98 (2H, dd, J = 3.4, 6.6 Hz), 7.50 (2H, dd, J = 3.4, 6.6 Hz), 2.05 (12H, m), 1.72 (36H, m), 1.36 (6H, m). 13C NMR (50 MHz, CDCl3): δ 139.0, 133.5, 131.8, 131.6, 130.0, 129.2, 127.4, 120.3, 116.4, 110.6, 108.5, 102.8, 29.6, 27.3, 24.0. MS (LDI) m/z 844 (100%, M+). Decomposition temperature: 275 °C.

Crystal data for compound 1a. C67H42N2Si2, M = 927.43, orthorhombic, a = 16.6409(6), b = 17.5827(7), c = 18.8903(8) Å, α = 90.00°, β = 90.00°, γ = 90.00°, V = 5527.1 Å3, T = 90.0(2) K, space group Pnma, Z = 4, 6945 reflections measured, 3748 unique (Rint = 0.0763), R1[I > 2σ(I)] = 0.0881.

Crystal data for compound 3c. C55H40NSi2, M = 795.25, orthorhombic, a = 16.8241(6), b = 17.0411(9), c = 16.1283(7), α = 90.00°, β = 90.00°, γ = 90.00°, V = 4624.0(4) Å3, T = 90.0(2) K, space group Pnma, Z = 4, 65241 reflections measured, 4431 unique (Rint = 0.0796), R1[I > 2σ(I)] = 0.1142.

Crystal data for compounds 1a and 2a. Taken from ref. 13, are available from the Cambridge Structural Database, RefCodes TATLEG and TATLIK, respectively.

2.2 Device fabrication
Solar cells were fabricated on pre-patterned indium tin oxide (ITO) coated glass substrates (Kintec, Hong Kong), which were cleaned by sonication in a mild detergent, rinsed in de-ionized water, and dried with nitrogen.
water, dried in a nitrogen stream, and treated with a 10 min UV-ozone exposure. PEDOT:PSS (Baytron P from H. C. Starck) was filtered through a 0.45 μm PVDF syringe filter, and then deposited by spin-coating at 6000 rpm for 60 s. The PEDOT:PSS layer was baked on a hotplate at 170 °C for 4 min to remove residual solvent. The samples were then transferred into a nitrogen-filled glovebox, in which all subsequent processing steps were carried out.

P3HT (American Dye Source) and the cyanopentacenes were dissolved in toluene at a ratio of 1 : 1 by weight to give a total concentration of 20 mg ml⁻¹. This ratio was initially kept constant for all derivatives to allow for easy comparison, but was later optimized for the best performing derivatives. The solutions were allowed to stir in the glovebox overnight, before they were spin-coated on top of the PEDOT:PSS layer at 1000 rpm for 60 s. All films were then annealed on a hotplate at 160 °C for 8 min, except for 2-CN-TCPS-Pn (3c) since solar cells made from this material were found to degrade under thermal treatment. Finally, 4 A of CsF and 400 A of Al were thermally evaporated under high vacuum (≈10⁻⁶ Torr) to form the cathode for the devices. A shadow mask was used in the evaporation to define a device active area of 3 mm². Control P3HT:PCBM solar cells were also fabricated according to a previously published recipe.¹⁸

3. Results and discussion

3.1 Crystallography

Two of the most common crystal packing motifs for acenes used as organic semiconductors are the edge-to-face “herringbone” arrangement and the face-to-face π-stacking arrangement.¹⁵ Trialkylsilylethynyl substitution on acenes generally yields 1D and 2D π-stacked arrays.¹⁹ While we have found that 2D “brickwork” stacking motifs (such as that of 2,3-CN2-TIPS-Pn (1a)—Fig. 3, top left) yield the best transport in planar devices such as transistors,¹² molecules with these packing arrangements perform poorly in OSC device studies (see Section 3.3 and Table 2). Crystallographic studies of pentacene derivatives with larger trialkylsilyl substituents are complicated by the tendency for disorder in these groups. A poorly refined structure for 2,3-CN2-TIBS-Pn (1b) suggests packing similar to the TIPS derivative (1a), and the poor performance of this material in OSC devices lends support to this assignment. Similar poor performance was also observed in 2,3,9,10-CN4-TIPS-Pn (2a) which adopts a 1D “slipped-stack” motif. Cyanopentacenes 1d and 3c both adopt a “sandwich-herringbone” motif (Fig. 3, right), and are among the best-performing materials in our studies. While the crystal structure of the TCPS derivative 1c could not be fully resolved, again due to extensive disorder, the collected data do support a gross packing similar to 1d and 3c, and the film morphology and device performance (see Section 3.3) of this compound are closely related.

3.2 Electrochemistry

Differential pulse voltammetry was performed with a BAS CV-50 W voltammetric analyzer at room temperature with a platinum button working electrode, a platinum wire counter electrode and a silver wire pseudo-reference electrode, in a nitrogen-purged 0.1 M Bu₄NPF₆ solution in dichloromethane, using ferrocene/ferrocenium as an internal standard at a scan rate of 20 mV s⁻¹. All values quoted are relative to Fc/Fc⁺ (Table 1).

Fig. 3 Representative crystal packings of the cyanopentacenes. Top left: 2,3-CN2-TIPS-Pn (1a), showing a strong 2D “brickwork” packing. Bottom left: 2,3,9,10-CN4-TIPS-Pn (2a). Right: 2,3-CN2-TCHS-Pn (1d). In contrast to the 2D π stacks of 2,3-CN2-TIPS-Pn (1a), the acene faces of 2,3,9,10-CN4-TIPS-Pn (2a) adopt a 1D π stack arrangement. Cyanopentacenes with larger trialkylsilyl groups, such as 2,3-CN2-TCHS-Pn (1d) and 2-CN-TCPS-Pn (3c), arrange themselves in a “sandwich-herringbone” motif (right).
The sequential addition of nitrile groups to the pentacene core raises both the oxidation and reduction potentials of the material. However, neither the number of nitrile groups on the acene core nor changes in the configuration of the trialkylsilyl group raises both the oxidation and reduction potentials of the mate-
rial. However, neither the number of nitrile groups on the acene core nor changes in the configuration of the trialkylsilyl group raises both the oxidation and reduction potentials of the mate-

Table 2 Solar cell performance from a 1 : 1 donor–acceptor blend

<table>
<thead>
<tr>
<th>Acceptor</th>
<th>Stacking</th>
<th>V_{OC}/V</th>
<th>J_{SC}/mA cm$^{-2}$</th>
<th>FF</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3-CN2-TIPS-Pn (1a)</td>
<td>2D “brickwork”</td>
<td>0.58</td>
<td>0.44</td>
<td>0.38</td>
<td>0.10</td>
</tr>
<tr>
<td>2,3-CN2-TIBS-Pn (1b)</td>
<td>2D “brickwork”</td>
<td>0.50</td>
<td>0.67</td>
<td>0.37</td>
<td>0.12</td>
</tr>
<tr>
<td>2,3-CN2-TCPS-Pn (1c)</td>
<td>1D “sandwich-herringbone”</td>
<td>0.54</td>
<td>1.93</td>
<td>0.41</td>
<td>0.43</td>
</tr>
<tr>
<td>2,3-CN2-TCHS-Pn (1d)</td>
<td>1D “sandwich-herringbone”</td>
<td>0.60</td>
<td>1.16</td>
<td>0.38</td>
<td>0.26</td>
</tr>
<tr>
<td>2,3,9,10-CN4-TIPS-Pn (2a)</td>
<td>1D “slipped-stack”</td>
<td>0.44</td>
<td>0.36</td>
<td>0.40</td>
<td>0.06</td>
</tr>
<tr>
<td>2-CN-TCPS-Pn (3c)</td>
<td>1D “sandwich-herringbone”</td>
<td>0.82</td>
<td>1.11</td>
<td>0.34</td>
<td>0.31</td>
</tr>
</tbody>
</table>

$V_{OC} = (1/e) \left(\left| E_{\text{HOMO}}^{\text{donor}} - E_{\text{LUMO}}^{\text{acceptor}} \right| - 0.3 \text{ V} \right)$
where e is the electron charge and the 0.3 V voltage "loss" is an empirical value. Hence, a larger difference between the donor HOMO and the acceptor LUMO energy levels will lead to higher V_{OC}. By comparing the energy levels in Fig. 4 and the V_{OC} values in Table 2, it is clear that this trend is observed, and it is not surprising that the highest V_{OC} was obtained with 2-CN-TCPS-Pn (3c) which has the lowest absolute LUMO value of 3.50 eV. The ability to tune HOMO–LUMO energy levels of the cyano-pentacenes is thus a great advantage of this family of acceptors, since it allows control of the V_{OC}.

Some optimization was carried out on 2-CN-TCPS-Pn (3c) and 2,3-CN2-TCPS-Pn (1c), which are the two best performing acceptors in this study. The original 1:1 blend ratio was found to be the best for the P3HT:2,3-CN2-TCPS-Pn system, and the optimized cell achieved a 0.54 V V_{OC}, 1.93 mA cm$^{-2}$ J_{SC}, 0.41 FF and 0.43% PCE. With regards to the P3HT:2-CN-TCPS-Pn system, a 1:0.4 donor–acceptor blend gave the best performance with a 0.78 V V_{OC}, 1.63 mA cm$^{-2}$ J_{SC}, 0.34 FF and 0.43% PCE. The optimized I–V curves are plotted in Fig. 6. The efficiencies of cells as a function of donor–acceptor blend ratios are plotted in Fig. 7. In comparison, the control P3HT:PCBM cell achieved a 0.64 V V_{OC}, 10.31 mA cm$^{-2}$ J_{SC}, 0.61 FF and 4.05% PCE, which is significantly better than the best cyanopentacene cells. Work is in progress to further improve the performance of the cyanopentacenes.

3.4 UV-Vis absorption and external quantum efficiency

UV-Vis absorption spectra were obtained using a Shimadzu UV-3101PC UV/Vis/Near-IR Spectrophotometer. The absorption spectra of P3HT, PCBM, and the two best performing acceptors are shown in Fig. 8. PCBM does not absorb significantly in the visible, while P3HT has good absorption up to about 600 nm. The cyanopentacene acceptors absorb further into the red, with 2,3-CN2-TCPS-Pn (1c) exhibiting an absorption peak at 700 nm. The cyanopentacenes thus have the potential to extend the spectral response of P3HT-based solar cells. To verify this claim, external quantum efficiency (EQE)
This journal is possible to independently tune both the HOMO–LUMO energy compared to a champion system such as P3HT:PCBM, it is beyond 700 nm. While the efficiencies are still low when acceptors for OSCs, with PCE up to 0.43% and absorption \(\lambda_{\text{max}} \) beyond 700 nm. The normalized EQE spectra clearly demonstrate that the cyanopentacene cells have a photovoltaic response in the 700–750 nm spectral region. The EQE spectrum is red-shifted with respect to the absorption spectrum, which is likely due to further crystallization upon thermal annealing. Since P3HT does not absorb beyond 650 nm, this contribution to the photocurrent must be attributed to the acceptor. The EQE values were normalized and plotted in Fig. 9(b), in order to provide a comparison with the P3HT:PCBM system (which has a peak EQE of about 75% at 400 nm). The normalized EQE spectra were obtained for the best performing cells. The EQE measurements were performed using a Newport 1000 W xenon lamp coupled to an Oriel Cornerstone 260 \(\frac{1}{4} \) m monochromator as the light source, a Keithley 236 SMU to measure short circuit current, and a Newport 918D-UV3-OD3 low power detector to monitor the light intensity. Fig 9(a) shows the absolute EQE values, and the P3HT:2,3-CN2-TCPS-Pn cell achieved an EQE of 3–4% in the 700–750 nm spectral region.

4. Conclusions

Cyanopentacenes have demonstrated potential as a new class of acceptors for OSCs, with PCE up to 0.43% and absorption \(\lambda_{\text{max}} \) beyond 700 nm. While the efficiencies are still low when compared to a champion system such as P3HT:PCBM, it is possible to independently tune both the HOMO–LUMO energy levels (cyano substitution) and film morphology (trialkylsilyle substitution) of the cyanopentacenes. Hence there is significant substitution space available to optimize the material. Guiding this search will be the finding that molecules with a “sandwich–herringbone” 1D π-stacking arrangement (e.g. 1d, 3c) can yield devices with better performance than those exhibiting a 2D arrangement (1a). We are optimistic that this class of materials can eventually perform much better than the best efficiencies reported here.

Acknowledgements

This work was supported by a grant from the Office of Naval Research (ONR). Yee-Fun Lim acknowledges a fellowship from the Agency of Science, Technology and Research (A*STAR), Singapore. Ying Shu would like to thank her co-worker Mr Balaji Purushothaman for his generosity in providing TCPS and TCHS alkynes.

References