Inorg. Chem. 2006, 45, 5251–5253

## Inorganic Chemistry

## An S = 2 Cyanide-Bridged Trinuclear Fe<sup>III</sup><sub>2</sub>Ni<sup>II</sup> Single-Molecule Magnet

Dongfeng Li,<sup>†</sup> Rodolphe Clérac,<sup>\*,‡</sup> Sean Parkin,<sup>†</sup> Guangbin Wang,<sup>§</sup> Gordon T. Yee,<sup>§</sup> and Stephen M. Holmes<sup>\*,†</sup>

Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, Centre de Recherche Paul Pascal, UPR-CNRS 8641, 115 avenue du Dr. A. Schweitzer, 33600 Pessac, France, and Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 Received March 7, 2006

Treatment of  $[NEt_4][(pzTp)Fe^{III}(CN)_3]$  (1) with Ni<sup>II</sup>(OTf)<sub>2</sub> (OTf = trifluoromethanesulfonate) and 1,5,8,12-tetraazadodecane (L) affords {[(pzTp)Fe<sup>III</sup>(CN)\_3]<sub>2</sub>[Ni<sup>II</sup>L] · <sup>1</sup>/<sub>2</sub>MeOH (**2**), while 2,2'-bipyridine (bipy) affords {[(pzTp)Fe<sup>III</sup>(CN)\_3]<sub>2</sub>[Ni<sup>II</sup>(bipy)<sub>2</sub>] · 2H<sub>2</sub>O (**3**). Magnetic measurements indicate that **2** and **3** have S = 2 ground states and that **3** exhibits slow relaxation of the magnetization above 2 K.

The burgeoning field of single-molecule magnet (SMM) materials has seen extensive activity over the past decade. These inorganic complexes exhibit superparamagnetic-like behavior owing to the large spin ground state (S) and Isingtype anisotropy (D < 0 and small E) derived from the transition-metal centers used in their construction.<sup>1</sup> These characteristics create an energy barrier ( $\Delta$ ) between the two thermodynamically equivalent  $m_S = \pm S$  configurations. Hence, below  $T_{\rm B}$ , the so-called blocking temperature, the thermal energy is insufficient to overcome  $\Delta$  and the spin is trapped in one of the two configurations. Application of large magnetic fields  $(H_{dc})$  saturates the magnetization (M) of the sample, and removal of this field ( $H_{dc} = 0$ ) will induce a slow decay of M toward zero with a characteristic relaxation time  $(\tau)$ . The relaxation time usually exhibits thermally activated behavior and can be measured using the time dependence of M or, more commonly, the frequency  $(\nu)$ dependence of the ac susceptibility. At very low temperatures, quantum tunneling of the magnetization (QTM) often relaxes the magnetization at rates faster than thermally activated pathways. Experimentally, a crossover occurs between these two regimes, and in this intermediate temperature range, the thermal barrier ( $\Delta$ ) is circumvented by quantum tunneling, affording an effective barrier  $\Delta_{\rm eff}$ .<sup>1</sup>

While the vast majority of SMMs are derived from metal centers linked by oxo and carboxylate ligands, several groups

10.1021/ic060379b CCC: \$33.50 © 2006 American Chemical Society Published on Web 06/07/2006

have recently described that such complexes can also be prepared from  $[fac-L^m M^n(CN)_3]^{n+m-3}$  units.<sup>2</sup> The preparation of these cyanometalate complexes utilizes a building-block synthetic approach, where discrete molecular precursors are allowed to self-assemble into a common structural archetype, allowing for detailed structure-property relationships to be described. As part of a continuing effort to develop structurally related cyanometalate SMMs, we recently developed a series of poly(pyrazolylborate) cyanometalate building blocks and have systematically investigated the controlled aggregation of these units into complexes and networks.<sup>3</sup> Herein, we report on the synthesis, structures, and spectroscopic and magnetic properties of two trinuclear Fe<sup>III</sup><sub>2</sub>Ni<sup>II</sup> complexes, { $[(pzTp)Fe^{III}(CN)_3]_2[Ni^{II}(L)]$ } · 1/2 MeOH (2; L = 1,5,8,12tetraazadodecane) and {[(pzTp)Fe<sup>III</sup>(CN)<sub>3</sub>]<sub>2</sub>[Ni<sup>II</sup>(bipy)<sub>2</sub>]}•2H<sub>2</sub>O (3; bipy = 2,2'-bipyridine), of which the latter exhibits slow relaxation of the magnetization above 2 K.

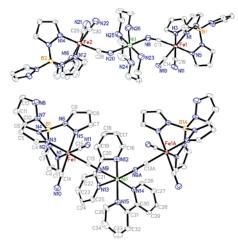
Treatment of [NEt<sub>4</sub>][(pzTp)Fe<sup>III</sup>(CN)<sub>3</sub>] (1) with nickel(II) trifluoromethanesulfonate and 1,5,8,12-tetraazododecane (L) or 2,2'-bipyridine (bipy) in methanol cleanly affords red **2** and orange **3** as crystalline solids.<sup>3c,4,5</sup> The infrared spectra exhibit intense  $v_{\rm CN}$  stretching absorptions at 2137 and 2122 cm<sup>-1</sup> for **2** and at 2162 and 2119 cm<sup>-1</sup> for **3** that are tentatively assigned as bridging and terminal cyanides, respectively.<sup>3</sup>

Compound **2** crystallizes in the triclinic PI space group.<sup>4,5</sup> The neutral complex consists of a central octahedral [Ni<sup>II</sup>-(L)]<sup>2+</sup> unit that is linked to two [(pzTp)Fe<sup>III</sup>(CN)<sub>3</sub>]<sup>-</sup> anions (Figure 1), via bridging cyanides, that are axial to the coordinated 1,5,8,12-tetraazadodecane ligand. The Ni–N bond distances for the *trans*-cyanides are 2.109(6) (Ni1–

<sup>\*</sup> To whom correspondence should be addressed. E-mail: smholm2@

uky.edu (S.M.H.), clerac@crpp-bordeaux.cnrs.fr (R.C.).

<sup>&</sup>lt;sup>†</sup> University of Kentucky.


<sup>&</sup>lt;sup>‡</sup> UPR-CNRS 8641.

<sup>&</sup>lt;sup>§</sup> Virginia Polytechnic Institute and State University.

 <sup>(</sup>a) Sessoli, R.; Gatteschi, D. Angew. Chem., Int. Ed. 2003, 42, 268– 297 and references cited therein.
(b) Beltran, L. M. C.; Long, J. R. Acc. Chem. Res. 2005, 38, 325–334 and references cited therein.

<sup>(2) (</sup>a) Schelter, E. J.; Prosvirin, A. V.; Dunbar, K. R. J. Am. Chem. Soc. 2004, 126, 15004–15005. (b) Wang, S.; Zou, J.-L.; Zhou, H.-C.; Choi, H. J.; Ke, Y.; Long, J. R.; You, X.-Z. Angew. Chem., Int. Ed. 2004, 43, 5940–5943. (c) Sokol, J. J.; Hee, A. G.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 7656–7657.

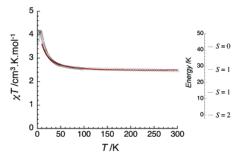
<sup>(3) (</sup>a) Li, D.; Parkin, S.; Wang, G.; Yee, G. T.; Prosvirin, A. V.; Holmes, S. M. *Inorg. Chem.* 2005, *44*, 4903–4905. (b) Li, D.; Parkin, S.; Wang, G.; Yee, G. T.; Holmes, S. M. *Inorg. Chem.* 2006, *45*, 1951–1959. (c) Li, D.; Parkin, S.; Wang, G.; Yee, G. T.; Clérae, R.; Wernsdorfer, W.; Holmes, S. M. *J. Am. Chem. Soc.* 2006, *128*, 4212–4215. (d) Li, D.; Parkin, S.; Wang, G.; Yee, G. T.; Holmes, S. M. *Inorg. Chem.* 2006, *45* 2773–2775.



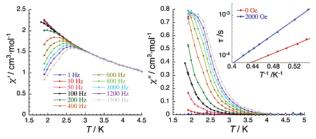
**Figure 1.** X-ray structure of **2** (top) and one structural isomer of **3** (bottom). Thermal ellipsoids are at the 50% level, and all H atoms and lattice water are eliminated for clarity. Selected bond distances (Å) and angles (deg) for **2**: Fe1–C13, 1.913(8); Fe2–C28, 1.923(8); C28–N20, 1.14(1); Ni1–N9, 2.082(6); Ni1–N20, 2.109(6); Ni1–N9–C13, 150.7(6); Ni1–N20–C28, 149.2(6); N9–Ni1–N20, 179.2(3). For **3**: Fe1–C13, 1.920(5); Ni1–N9, 2.049(4); Ni1–N9–C13, 169.8(4); N9–Ni1–N9A, 90.8(2).

N20) and 2.082(6) (Ni1-N9) Å, while those for the amine range from 2.077(9) (Ni1-N24) to 2.098(9) (Ni1-N25) Å, respectively. The terminal cyanide Fe1-C bond lengths are nearly equivalent [1.933(8) and 1.932(7) Å], with the smallest value [1.913(8) Å] found for the bringing cyanide (Fe1-C13). The terminal Fe−C=N bond angles range from 174.9(8)° (Fe2-C30-N22) to 177.9(7)° (Fe1-C14-N10), while nonlinear bridging cyanide bond angles [Fe1-C13-N9,  $170.4(6)^{\circ}$ ; Fe2-C28-N20,  $170.4(7)^{\circ}$ ] are found; the Ni−N≡C bond angles are also highly bent, ranging from 149.2(6)° (Ni1-N20-C28) to 150.7(6)° (Ni1-N9-C13), respectively. The intracomplex Fe1····Fe2, Fe1····Ni1, and Fe2...Ni1 contacts are 9.806(2), 4.900(2), and 4.910(2) Å, respectively, while the closest intercomplex contacts between the pyrazole rings and Fe<sup>III</sup> (Fe1····Fe1B) centers are 6.707(2) and 12.881(2) Å, respectively.

Compound **3** crystallizes as a neutral trinuclear complex in the monoclinic  $P2_1/m$  space group.<sup>4,5</sup> The complex consists of a central  $[Ni^{II}(bipy)_2]^{2+}$  unit located on a crystallographic mirror plane that is linked to two  $[(pzTp)Fe(CN)_3]^-$  anions via *cis*-cyano rather than *trans*-cyano linkages (Figure 1). Symmetry considerations dictate that two structural isomers are found in a 1:1 ratio (Figure S3 in the Supporting Information) for the nonplanar,  $C_1$ -symmetric, trinuclear complex (Figure S4 in the Supporting Information).<sup>5</sup> The Ni1–N bond distance for the bridging cyanide [Ni1–N9, 2.048(4) Å] is slightly smaller than that in **2**, while those for the coordinated bipy ligands range from 2.02(2) to 2.16(2) Å. For **3**, the terminal cyanide Fe1–C distances are essentially equivalent [1.913(5) and 1.916(5) Å], while a slightly longer bond length [1.920(5) Å] is found for the bridging cyanide (Fe1–C13). The Fe1–C $\equiv$ N bond angles for the terminal cyanides range from 179.2(4)° to 179.3(4)°, while the bridging cyanide [Fe1–N9–C13, 176.4(4)°] is more acute; the Ni1–N $\equiv$ C (Ni1–N9–C13) bond angle is 169.8(4)° and is more linear than those in **2**. The intracomplex Fe1····Ni1 and Fe1····Fe1A contacts are 5.080(1) and 7.747(1) Å, respectively. The closest intercomplex contacts between bipy and pyrazole rings are 3.507(5) Å, while those for the Fe<sup>III</sup> (Fe1···Fe1B) centers are 8.536(1) Å.


The C-bound cyanides are expected to afford low-spin Fe<sup>III</sup> (S = 1/2) centers that exhibit orbital contributions to the magnetic moment and afford g values that deviate significantly from 2.0 (ca. 2.7; see Figure S11 in the Supporting Information).<sup>2b,3,6-9</sup> The  $\chi T$  vs T data suggest that the Fe<sup>III</sup> and Ni<sup>II</sup> (S = 1) centers in 2 are ferromagnetically coupled (Figure S5 in the Supporting Information) because the  $\chi T$ product gradually increases from 2.75 cm<sup>3</sup> K mol<sup>-1</sup> (300 K), reaching a maximum value of  $3.20 \text{ cm}^3 \text{ K mol}^{-1}$  at 5 K; below 5 K,  $\chi T$  decreases toward a minimum value of 2.80 cm3 K mol-1 at 1.82 K. On the basis of the trinuclear structure of 2, the magnetic data have been modeled using an isotropic Heisenberg model in the weak field approximation.<sup>6</sup> Thus, the theoretical susceptibility has been deduced from the van Vleck equation considering the following Hamiltonian:  $H = -2J_1[S_1 \cdot (S_2 + S_3)]$ , where  $J_1$  is the isotropic exchange interaction between Fe<sup>III</sup> and Ni<sup>II</sup> sites and  $S_i$  is the spin operator for each metal center ( $S_1 = 1$ , Ni<sup>II</sup>;  $S_i = \frac{1}{2}$ , Fe<sup>III</sup>; with i = 2 and 3). When the data below 15 K are neglected to avoid the effects of intercomplex interactions and/or magnetic anisotropy, the best set of parameters obtained is  $J_1/k_B = +1.3(1)$  K and  $g_{iso} = 2.50$ (Figure S5 in the Supporting Information).<sup>5,10</sup> The magnitude of the magnetic exchange through the cyanide bridges is lower than those obtained for other tri- and tetranuclear complexes derived from tricyanoferrate(III) and -nickel(II) centers.<sup>3,6,7</sup> On the basis of the  $J_1$  value, the first excited state (S = 1) is ca. 2.6 K above the S = 2 ground state for 2 (Figure S5 in the Supporting Information). Confirmation of this ground state is obtained in the M vs  $H_{dc}$  data at 1.85 K because the magnetization is nearly saturated at 7 T, approaching a maximum value of 4.4  $\mu_{\rm B}$  (Figure S6 in the Supporting Information).<sup>5</sup> ac susceptibility measurements are frequency-independent (Figure S7 in the Supporting Infor-

- (7) Yang, J. Y.; Shores, M. P.; Sokol, J. J.; Long, J. R. Inorg. Chem. 2003, 42, 1403–1419.
- (8) Lescouëzec, R.; Vaissermann, J.; Lloret, F.; Julve, M.; Verdaguer, M. Inorg. Chem. 2002, 41, 5943–5945.
- (9) Kim, J.; Han, S.; Cho, I.-K.; Choi, K. Y.; Heu, M.; Yoon, S.; Suh, B. J. Polyhedron 2004, 23, 1333–1339.
- (10) Note that consideration of the intercomplex interactions in the frame of the mean-field approximation did not lead to a better fit of the experimental data.

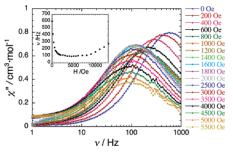

<sup>(4)</sup> Crystal data for 1: C<sub>23</sub>H<sub>32</sub>BFeN<sub>12</sub>, P2<sub>1</sub>/n, Z = 4, a = 10.2580(2) Å, b = 15.2386(3) Å, c = 16.9913(4) Å, β = 96.1396(7)°, V = 2640.8-(1) Å<sup>3</sup>, R1 = 0.0426, wR2 = 0.0851. Crystal data for 2: C<sub>38.5</sub>H<sub>48</sub>B<sub>2</sub>-Fe<sub>2</sub>N<sub>26</sub>NiO<sub>2.5</sub>, P1, Z = 2, a = 8.6821(8) Å, b = 16.683(2) Å, c = 18.355(2) Å, a = 76.425(5)°, β = 76.377(5)°, γ = 87.918(5)°, V = 2511.1(4) Å<sup>3</sup>, R1 = 0.0905, wR2 = 0.2453. Crystal data for 3: C<sub>30</sub>H<sub>44</sub>B<sub>2</sub>Fe<sub>2</sub>N<sub>26</sub>NiO<sub>2</sub>, P2<sub>1</sub>/m, Z = 2, a = 8.7275(2) Å, b = 22.6306-(6) Å, c = 15.3268(4) Å, β = 105.060(1)°, V = 2923.2(1) Å<sup>3</sup>, R1 = 0.0691, wR2 = 0.0854. Data were collected at 90.0(2) K on a Nonius Kappa CCD diffractometer (1) using Mo Kα (λ = 0.710 73 Å) radiation, while 2 and 3 utilized a Bruker Proteum X8 rotating-anode diffractometer with graphite-monochromatized Cu Kα (λ = 1.541 78 Å) radiation. Structures were solved by direct methods and refined against all data using SHELXL97.

<sup>(5)</sup> See the Supporting Information.

<sup>(6) (</sup>a) Wang, S.; Zuo, J.-L.; Zhou, H.-C.; Song, Y.; You, X.-Z. *Inorg. Chim. Acta* **2005**, *358*, 2101–2106. (b) Wang, S.; Zuo, J.-L.; Zhou, H.-C.; Song, Y.; Gao, S.; You, X.-Z. *Eur. J. Inorg. Chem.* **2004**, 3681–3687.



**Figure 2.** Temperature dependence of  $\chi T$  at 1000 Oe (left) and energy level diagram (right) for **3**. Red line: least-squares fitting of the data.




**Figure 3.** Temperature dependence of the real ( $\chi'$ ) and imaginary ( $\chi''$ ) components of the ac susceptibility for **3** ( $H_{dc} = 0$  Oe and  $H_{ac} = 3$  Oe) between 1 and 1500 Hz. Inset:  $\tau$  vs  $T^{-1}$  plot at  $H_{dc} = 0$  and 2000 Oe. The solid lines represent an Arrhenius fit of the data.

mation),<sup>5</sup> suggesting that  $\mathbf{2}$  is not a SMM in the temperature range measured.

The  $\chi T$  vs T data for **3** suggest that the Fe<sup>III</sup> and Ni<sup>II</sup> centers are also ferromagnetically coupled (Figure 2) because the  $\chi T$  product gradually increases from 2.34 cm<sup>3</sup> K mol<sup>-1</sup> (300 K), reaching a maximum value of 6.01 cm<sup>3</sup> K mol<sup>-1</sup> at 4 K; below 4 K,  $\chi T$  decreases toward a minimum value of 3.60 cm<sup>3</sup> K mol<sup>-1</sup> at 1.84 K. Fitting of the magnetic data for **3** gives  $J_1/k_B = +7.0(2)$  K and  $g_{iso} = 2.31$  (solid line, Figure 2).<sup>10</sup> The magnitude of the magnetic exchange through the cyanide bridges is comparable to those reported for related complexes.<sup>3,6–9</sup> For **3**, the magnitude of  $J_1$  is much larger than that in 2, suggesting that the linear cyanide bridges afford more efficient superexchange pathways.<sup>3,6,7</sup> Scaling with the value of  $J_1$ , the S = 1 first excited state for **3** is much higher than that for 2, being ca. 14 K above the S =2 ground state (Figure 2). Once again the M vs  $H_{dc}$  data at 1.85 K support this assumption because the magnetization is nearly saturated, reaching 4  $\mu_{\rm B}$  at 7 T (Figure S8 in the Supporting Information).<sup>5</sup>

The temperature dependence of the ac susceptibility for **3** was measured at several different frequencies at  $H_{dc} = 0$  Oe (Figure 3). The ac susceptibility is strongly frequency-dependent, suggesting that **3** exhibits slow relaxation of the magnetization. From the data shown in Figure 3, the relaxation time,  $\tau$ , can be determined from the maximum of  $\chi''(T)$ .<sup>1</sup> The relaxation time for **3** follows an Arrhenius law with an energy gap of 12.0 K and  $\tau_0 = 4 \times 10^{-7}$  s (inset of Figure 3). As is the case for many SMMs with small spin states,<sup>11</sup> it is likely that the observed energy barrier takes an effective value, resulting from a "short-cut" of the thermal barrier by QTM. In zero field, the  $\pm m_S$  states have the same energy and QTM between these pairs of levels is possible. When a magnetic field is applied, the  $m_S < 0$  and  $m_S > 0$ 



**Figure 4.**  $\chi''$  vs  $\nu$  plot at 1.85 K under various applied  $H_{dc}$  for **3**. Inset: field dependence of the characteristic frequency at 1.85 K.

levels decrease and increase respectively in energy, preventing quantum tunneling between the  $\pm m_S$  states.<sup>1</sup>

To investigate the activated behavior of **3**, we performed ac susceptibility measurements under several applied dc magnetic fields (Figures 4 and S9 and S10 in the Supporting Information).<sup>5</sup> At 1.85 K, the characteristic frequency (maximum of the  $\chi''$  vs  $\nu$  plot) decreases rapidly from 600 Hz at 0 Oe and approaches a nearly constant value of 100 Hz between 2000 and 5000 Oe (inset of Figure 4). As shown by this result, the OTM relaxation pathway remains efficient at 1.85 K.  $\tau$  was thus estimated using the ac data under 2000 Oe (Figure S10 in the Supporting Information). As expected, the relaxation time still follows an Arrhenius law with  $\tau_0 =$  $2 \times 10^{-8}$  s and an energy gap of 20.6 K is found (inset of Figure 3). It is also worth noting that this energy gap allows for an estimation of the uniaxial anisotropy  $D/k_{\rm B} \approx -5.2$  K. Finally, the increase of the characteristic frequency (inset of Figure 4) for fields higher than 5000 Oe is expected because resonant QTM should occur for  $H \approx D/g\mu_{\rm B} \approx 4$  $T^{1}$ 

In summary, we have described the syntheses, structures, and magnetic properties of two cyanide-bridged trinuclear  $Fe^{III}_2Ni^{II}$  (S = 2) complexes. Magnetic studies suggest that the magnitude of the magnetic exchange between the  $Fe^{III}$  and  $Ni^{II}$  centers can be controlled via ancillary ligand choice, and ac susceptibility measurements in a nonzero dc field indicate that **3** is a SMM.

Acknowledgment. S.M.H. gratefully acknowledges the donors of the American Chemical Society Petroleum Research Fund (PRF 38388-G3), the Kentucky Science and Engineering Foundation (Grants KSEF-621-RDE-006 and KSEF-992-RDE-008), and the University of Kentucky Summer Faculty Research Fellow and Major Research Project programs for financial support. R.C. thanks MAGMANet (Grant NMP3-CT-2005-515767), CNRS, Bordeaux 1 University, and the Conseil Régional d'Aquitaine for financial support. G.T.Y. thanks the National Science Foundation (Grant CHE-0210395) for partial financial support.

**Supporting Information Available:** X-ray crystallographic data in CIF format, experimental details, and additional magnetic data. This material is available free of charge via the Internet at http://pubs.acs.org.

## IC060379B

<sup>(11)</sup> For pertinent examples, see: Miyasaka, H.; Clérac, R.; Wernsdorfer, W.; Lecren, L.; Bonhomme, C.; Sugiura, K.-I.; Yamashita, M. Angew. Chem. 2004, 116, 2861–2865.